|
|
Teoriya Veroyatnostei i ee Primeneniya, 1964, Volume 9, Issue 1, Pages 31–42
(Mi tvp336)
|
|
|
|
This article is cited in 10 scientific papers (total in 10 papers)
Mehrdimensionale Grenzwertsätze für grosse Abweichungen und ihre Anwendung auf die Verteilung von $\chi^2$
Wolfgan Richter
Abstract:
Going out from multi-dimensional local limit theorems for large deviations (see [3], Theorem 1, as well as Theorem 2 of the present note), two integral limit theorems are proved (Theorems 4 and 5). In the proof a generalization of the method is used, by which A. Ya. Khinchin derived the first integral theorem for large deviations in the case of Bernoulli schemes [7]. Theorem 1 is a consequence of these theorems applied to the distribution of the $\chi^2$ statistics.
Received: 15.09.1962
Citation:
Wolfgan Richter, “Mehrdimensionale Grenzwertsätze für grosse Abweichungen und ihre Anwendung auf die Verteilung von $\chi^2$”, Teor. Veroyatnost. i Primenen., 9:1 (1964), 31–42; Theory Probab. Appl., 9:1 (1964), 28–37
Linking options:
https://www.mathnet.ru/eng/tvp336 https://www.mathnet.ru/eng/tvp/v9/i1/p31
|
| Statistics & downloads: |
| Abstract page: | 457 | | Full-text PDF : | 159 | | References: | 2 |
|