Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1995, Volume 40, Issue 1, Pages 205–213 (Mi tvp3438)  

This article is cited in 9 scientific papers (total in 9 papers)

Short Communications

Linear estimators and radonifying operators

H. Luschgy

Institut für Mathematische Statistik, Universität Münster, Münster, Federal Republic of Germany
Full-text PDF (543 kB) Citations (9)
Abstract: We consider the problem of estimating a signal $Y$ with values in a Banach space based on the observation $X$ with values in another Banach space given their joint Gaussian distribution. Linear estimators are denned to be measurable linear transformations. A characterization of measurable linear transformations with respect to a Gaussian measure by radonifying operators is established. The Bayes estimator $\mathbf{E}(Y|X)$ is shown to be a measurable linear transformation and the associated radonifying operator is derived.
Keywords: radonifying operator, measurable linear transformation, conditional Gaussian distribution.
Received: 05.02.1992
English version:
Theory of Probability and its Applications, 1995, Volume 40, Issue 1, Pages 167–175
DOI: https://doi.org/10.1137/1140017
Bibliographic databases:
Document Type: Article
Language: English
Citation: H. Luschgy, “Linear estimators and radonifying operators”, Teor. Veroyatnost. i Primenen., 40:1 (1995), 205–213; Theory Probab. Appl., 40:1 (1995), 167–175
Citation in format AMSBIB
\Bibitem{Lus95}
\by H.~Luschgy
\paper Linear estimators and radonifying operators
\jour Teor. Veroyatnost. i Primenen.
\yr 1995
\vol 40
\issue 1
\pages 205--213
\mathnet{http://mi.mathnet.ru/tvp3438}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1346746}
\zmath{https://zbmath.org/?q=an:0839.62089}
\transl
\jour Theory Probab. Appl.
\yr 1995
\vol 40
\issue 1
\pages 167--175
\crossref{https://doi.org/10.1137/1140017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UH07100017}
Linking options:
  • https://www.mathnet.ru/eng/tvp3438
  • https://www.mathnet.ru/eng/tvp/v40/i1/p205
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025