|
|
Teoriya Veroyatnostei i ee Primeneniya, 1993, Volume 38, Issue 3, Pages 645–652
(Mi tvp4001)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Short Communications
Inequalities for concentration of a decomposition
B. A. Rogozin Omsk State University
Abstract:
For a measure $P$ defined on the $\sigma $-algebra $B$ of Borel sets of the real line with Lebesgue measure $L$, the concentration functions
$$
Q({P,z})=\sup_{x \in R}\mathbf{P}({[{x,x + z})}),
\qquad
\widehat Q({P,z})=\sup\{{\mathbf{P}(A):L(A)\le z,A\in\mathcal{B}}\}
$$
and the concentration function of the decomposition $\widehat P$:
\begin{align*}
\widehat P({[{-z,0})})&=\widehat P({({0,z}]})=(\widehat Q(P,2z)-\widehat Q(P,0))/2,
\qquad z > 0,
\\
\widehat P({\{0\}})&=\widehat Q({P,0}).
\end{align*}
are introduced.It is proved that if the finite measures $P_k $ and $T_k $ satisfy $\widehat Q(P_k ,z) \le \widehat Q(T_k ,z), k = 1, \ldots ,n$, then $\widehat Q(P_1 * \cdots * P_n ,z) \le Q(\widehat P_1 * \cdots * \widehat P_n ,z) \le Q(\widehat T_1 * \cdots * \widehat T_n ,z)$.
Keywords:
concentration function, concentration function of a decomposition, inequalities for distribution convolutions.
Received: 12.08.1991
Citation:
B. A. Rogozin, “Inequalities for concentration of a decomposition”, Teor. Veroyatnost. i Primenen., 38:3 (1993), 645–652; Theory Probab. Appl., 38:3 (1993), 556–562
Linking options:
https://www.mathnet.ru/eng/tvp4001 https://www.mathnet.ru/eng/tvp/v38/i3/p645
|
| Statistics & downloads: |
| Abstract page: | 266 | | Full-text PDF : | 94 | | References: | 2 | | First page: | 9 |
|