|
|
Teoriya Veroyatnostei i ee Primeneniya, 1964, Volume 9, Issue 4, Pages 626–643
(Mi tvp414)
|
|
|
|
This article is cited in 39 scientific papers (total in 39 papers)
Investigation of the Conditions of the Asymptotic Existence of the Configuration Integral of the Gibbs Distribution
R. L. Dobrušin Moscow
Abstract:
Let $V$ be a cube of dimension $\nu$, with volume $|V|$. Let ${{|V|}/{N \to\nu}}$, $N\to\infty$. Let ${\mathbf x}=(x_1,\cdots ,x_N)$, $x_i\in V$, $i=1,\cdots ,N$,
$$
Q(V,N)=\int_V\dotsi\int_V\exp\{-\beta U({\mathbf x})\}\,dx_1\dots dx_N,
$$
where
$$
U({\mathbf x})=\sum_{1\leqq i<j\leqq N}\Phi(|x_i-x_j|).
$$
The conditions on $\Phi(y)$, which are sufficient and in some sense necessary for the existence of the finite limit
$$
\lim_{N\to\infty}\frac1N\log\frac1{{N!}}Q(V,N)
$$
are given.
Received: 20.05.1964
Citation:
R. L. Dobrušin, “Investigation of the Conditions of the Asymptotic Existence of the Configuration Integral of the Gibbs Distribution”, Teor. Veroyatnost. i Primenen., 9:4 (1964), 626–643; Theory Probab. Appl., 9:4 (1964), 566–581
Linking options:
https://www.mathnet.ru/eng/tvp414 https://www.mathnet.ru/eng/tvp/v9/i4/p626
|
|