Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2012, Volume 57, Issue 4, Pages 744–760
DOI: https://doi.org/10.4213/tvp4477
(Mi tvp4477)
 

This article is cited in 9 scientific papers (total in 9 papers)

The Schoenberg–Lévy kernel and relationships among fractional Brownian motion, bifractional Brownian motion, and others

C. Ma

Department of Mathematics and Statiatics, Wichita State University
Full-text PDF (184 kB) Citations (9)
References:
Abstract: Starting with a discussion about the relationship between the fractional Brownian motion and the bifractional Brownian motion on the real line, we find that a fractional Brownian motion can be decomposed as an independent sum of a bifractional Brownian motion and a trifractional Brownian motion that is defined in the paper. More generally, this type of orthogonal decomposition holds for a large class of Gaussian or elliptically contoured random functions whose covariance functions are Schoenberg–Lévy kernels on a temporal, spatial, or spatio-temporal domain. Also, many self-similar, nonstationary (Gaussian, elliptically contoured) random functions are formulated, and properties of the trifractional Brownian motion are studied. In particular, a bifractional Brownian motion in $\mathbb{R}^d$ is shown to be a quasi-helix in the sense of Kahane.
Keywords: bifractional Brownian motion; conditionally negative definite; covariance function; elliptically contoured random function; Gaussian random function; positive definite; quasi-helix; Schoenberg–Lévy kernel; self-similarity; trifractional Brownian motion; variogram.
Received: 18.05.2008
Revised: 22.02.2012
English version:
Theory of Probability and its Applications, 2013, Volume 57, Issue 4, Pages 619–632
DOI: https://doi.org/10.1137/S0040585X97986230
Bibliographic databases:
Document Type: Article
MSC: 60G22
Language: English
Citation: C. Ma, “The Schoenberg–Lévy kernel and relationships among fractional Brownian motion, bifractional Brownian motion, and others”, Teor. Veroyatnost. i Primenen., 57:4 (2012), 744–760; Theory Probab. Appl., 57:4 (2013), 619–632
Citation in format AMSBIB
\Bibitem{Ma12}
\by C.~Ma
\paper The Schoenberg--L\'evy kernel and relationships among fractional Brownian motion, bifractional Brownian motion, and others
\jour Teor. Veroyatnost. i Primenen.
\yr 2012
\vol 57
\issue 4
\pages 744--760
\mathnet{http://mi.mathnet.ru/tvp4477}
\crossref{https://doi.org/10.4213/tvp4477}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3201668}
\zmath{https://zbmath.org/?q=an:1284.60081}
\elib{https://elibrary.ru/item.asp?id=20732985}
\transl
\jour Theory Probab. Appl.
\yr 2013
\vol 57
\issue 4
\pages 619--632
\crossref{https://doi.org/10.1137/S0040585X97986230}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326878100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887163534}
Linking options:
  • https://www.mathnet.ru/eng/tvp4477
  • https://doi.org/10.4213/tvp4477
  • https://www.mathnet.ru/eng/tvp/v57/i4/p744
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025