|
|
Teoriya Veroyatnostei i ee Primeneniya, 1963, Volume 8, Issue 2, Pages 224–228
(Mi tvp4670)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Short Communications
On the Law of Large Numbers for Markov Processes
M. G. Šhur Moscow
Abstract:
The main result of this paper is the derivation of the law of large numbers for Markov processes. More exactly, let $\lambda$ be a sub-invariant measure for a measurable Markov process $(x_t,\mathcal{M}_t,P_x)$ and let $H$ be the Hilbert space of functions $f$ which satisfy the condition $\int{{|f|}^2 d\lambda}<\infty$. Then there exists the limit (in the norm of $H$) $$\mathop{\lim}\limits_{T\to\infty}\frac{1}{T}\int_0^T{M_x f(x_t )\,dt=g(x)}$$ and we have for any $\varepsilon>0$ $$\mathop{\lim}\limits_{T\to\infty}P_\lambda\left\{{\left|{\frac{1}{T}\int_0^T{f(x_t)\,dt-g(x_0)}}\right|>\varepsilon}\right\}0,$$ where $$P_\lambda\{\cdot\}=\int{P_x\{\cdot\}\lambda(dx)}.$$
Received: 14.12.1961
Citation:
M. G. Šhur, “On the Law of Large Numbers for Markov Processes”, Teor. Veroyatnost. i Primenen., 8:2 (1963), 224–228; Theory Probab. Appl., 8:2 (1963), 208–212
Linking options:
https://www.mathnet.ru/eng/tvp4670 https://www.mathnet.ru/eng/tvp/v8/i2/p224
|
|