|
|
Teoriya Veroyatnostei i ee Primeneniya, 1962, Volume 7, Issue 1, Pages 84–89
(Mi tvp4701)
|
|
|
|
This article is cited in 24 scientific papers (total in 24 papers)
Short Communications
On a Density of one Gaussian Distribution with Respect to Another
Yu. A. Rozanov Moscow
Abstract:
In this paper two arbitrary Gaussian measures $P_1(d\omega)$ and $P_2(d\omega)$ of a stochastic process $\{\xi_\alpha(\omega)\}$ with an abstract parameter $\alpha$ are considered. It is proved that they are equivalent if and only if the operator $B$ (in (12)) on the Hilbert space $H$ of random variables (10) has a pure point spectrum, and the eigen-vectors and the eigen-values of $B$ satisy conditions (15) and (16); the density $p(\omega)=P_1(d\omega)/P_2(d\omega)$ satisfies equation (17).
Received: 24.08.1960
Citation:
Yu. A. Rozanov, “On a Density of one Gaussian Distribution with Respect to Another”, Teor. Veroyatnost. i Primenen., 7:1 (1962), 84–89; Theory Probab. Appl., 7:1 (1962), 82–87
Linking options:
https://www.mathnet.ru/eng/tvp4701 https://www.mathnet.ru/eng/tvp/v7/i1/p84
|
|