Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2016, Volume 61, Issue 2, Pages 234–267
DOI: https://doi.org/10.4213/tvp5055
(Mi tvp5055)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the time of attaining a high level by a transient random walk in a random environment

V. I. Afanasyev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (279 kB) Citations (6)
References:
Abstract: Let a sequence of independent identically distributed pairs of random variables $(p_{i},q_{i}) $, $i\in \mathbf{Z}$, be given, with ${p_{0}+q_{0}=1}$ and $p_{0}>0$, $q_{0}>0$ a.s. We consider a random walk in the random environment $(p_{i},q_{i}) $, $i\in \mathbf{Z}$. This means that under a fixed environment a walking particle located at some moment in a state $i$ jumps either to the state $(i+1) $ with probability $p_{i}$ or to the state $(i-1) $ with probability $q_{i}$. It is assumed that $\mathbf{E}\,\log (p_{0}/q_{0}) <0$, i.e., that the random walk tends with time to $-\infty$. The set of such random walks may be divided into three types according to the value of the quantity $\mathbf{E}\,((p_{0}/q_{0}) \log (p_{0}/q_{0}))$. In the case when the expectation above is zero we prove a limit theorem as $n\to \infty $ for the of time distribution of reaching the level $n$ by the mentioned random walk.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00318_а
Received: 14.01.2015
Revised: 21.09.2015
English version:
Theory of Probability and its Applications, 2017, Volume 61, Issue 2, Pages 178–207
DOI: https://doi.org/10.1137/S0040585X97T988101
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Afanasyev, “On the time of attaining a high level by a transient random walk in a random environment”, Teor. Veroyatnost. i Primenen., 61:2 (2016), 234–267; Theory Probab. Appl., 61:2 (2017), 178–207
Citation in format AMSBIB
\Bibitem{Afa16}
\by V.~I.~Afanasyev
\paper On the time of attaining a high level by a transient random walk in a random environment
\jour Teor. Veroyatnost. i Primenen.
\yr 2016
\vol 61
\issue 2
\pages 234--267
\mathnet{http://mi.mathnet.ru/tvp5055}
\crossref{https://doi.org/10.4213/tvp5055}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3626782}
\elib{https://elibrary.ru/item.asp?id=26604209}
\transl
\jour Theory Probab. Appl.
\yr 2017
\vol 61
\issue 2
\pages 178--207
\crossref{https://doi.org/10.1137/S0040585X97T988101}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404120400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021212043}
Linking options:
  • https://www.mathnet.ru/eng/tvp5055
  • https://doi.org/10.4213/tvp5055
  • https://www.mathnet.ru/eng/tvp/v61/i2/p234
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025