Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1965, Volume 10, Issue 3, Pages 519–526 (Mi tvp547)  

This article is cited in 34 scientific papers (total in 34 papers)

Short Communications

On the closeness of the distributions of the two sums of independent random variables

V. M. Zolotarev

Moscow
Abstract: Let $\{\xi_j\}$, $j=1,2,\dots,n$ (resp. $\{\eta_j\}$, $j=1,2,\dots,n$) be independent random variables with distribution functions $\{F_j\}$, $j=1,2,\dots,n$ (resp. $\{G_j\}$, $j=1,2,\dots,n$) and let $F$ (resp. $G$) be the distribution function of the sum $\xi=\xi_1+\dots+\xi_n$ (resp. $\eta=\eta_1+\dots+\eta_n$).
Let us denote
$$ \mu(k)=\sum_{j=1}^n\biggl|\int x^kd(F_j-G_j)\bigr|,\quad \nu(r)=\sum_{j=1}^n\int|x|^r|d(F_j-G_j)|. $$
We suppose that $\mu(0)=\mu(1)=\dots=\mu(m)=0$ and $\nu(r)$ exist for some $r$, $m\le r\le m+1$. In this case
a) if the distribution of $\eta$ has a density bounded by a constant $q$, then
$$ |F(x)-G(x)|<C[\nu(r)q^r]^\frac1{1+r},\eqno{(\text*)} $$

b) if $F$ and $G$ are lattice distributions with the same points of discontinuity and the same largest common factor of the length of the intervals between jumps $h$, then
$$ |F(x)-G(x)|<C_1[\nu(r)h^{-r}]\eqno{(\text{**})} $$
where $C$ and $C_1$ are constants depending only on $m$ and $r$.
In the case a) an estimation of the type (**), which is better then one of the type (*) can be achieved only when some additional requirements on $\xi_j$ are satisfied. The estimations (*) and (**) make it possible to formulate some sufficient conditions for $F$ to converge to infinitely divisible distribution $G$ when the summands $\xi_j$ are not necessarily uniformly infinitesimal.
Received: 10.05.1965
English version:
Theory of Probability and its Applications, 1965, Volume 10, Issue 3, Pages 472–479
DOI: https://doi.org/10.1137/1110055
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. M. Zolotarev, “On the closeness of the distributions of the two sums of independent random variables”, Teor. Veroyatnost. i Primenen., 10:3 (1965), 519–526; Theory Probab. Appl., 10:3 (1965), 472–479
Citation in format AMSBIB
\Bibitem{Zol65}
\by V.~M.~Zolotarev
\paper On the closeness of the distributions of the two sums of independent random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 1965
\vol 10
\issue 3
\pages 519--526
\mathnet{http://mi.mathnet.ru/tvp547}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=189109}
\zmath{https://zbmath.org/?q=an:0214.17402}
\transl
\jour Theory Probab. Appl.
\yr 1965
\vol 10
\issue 3
\pages 472--479
\crossref{https://doi.org/10.1137/1110055}
Linking options:
  • https://www.mathnet.ru/eng/tvp547
  • https://www.mathnet.ru/eng/tvp/v10/i3/p519
  • This publication is cited in the following 34 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025