Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2022, Volume 67, Issue 3, Pages 471–488
DOI: https://doi.org/10.4213/tvp5499
(Mi tvp5499)
 

This article is cited in 3 scientific papers (total in 3 papers)

Limiting spectral distribution for large sample covariance matrices with graph-dependent elements

P. A. Yaskov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (464 kB) Citations (3)
References:
Abstract: For sample covariance matrices associated with random vectors having graph dependent entries and a number of dimensions growing with the sample size, we derive sharp conditions for the limiting spectrum of the matrices to have the same form as in the case of Gaussian data with similar covariance structure. Our results are tight. In particular, they give necessary and sufficient conditions for the Marchenko–Pastur theorem for sample covariance matrices associated with random vectors having $m$-dependent orthonormal elements when $m=o(n)$.
Keywords: random matrices, covariance matrices, the Marchenko–Pastur law.
Funding agency Grant number
Russian Science Foundation 18-71-10097
The results in section 3 were obtained with the support of the Russian Science Foundation (grant 18-71-10097).
Received: 10.05.2021
Accepted: 20.10.2021
Published: 22.07.2022
English version:
Theory of Probability and its Applications, 2022, Volume 67, Issue 3, Pages 375–388
DOI: https://doi.org/10.1137/S0040585X97T991003
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: P. A. Yaskov, “Limiting spectral distribution for large sample covariance matrices with graph-dependent elements”, Teor. Veroyatnost. i Primenen., 67:3 (2022), 471–488; Theory Probab. Appl., 67:3 (2022), 375–388
Citation in format AMSBIB
\Bibitem{Yas22}
\by P.~A.~Yaskov
\paper Limiting spectral distribution for large sample covariance matrices with graph-dependent elements
\jour Teor. Veroyatnost. i Primenen.
\yr 2022
\vol 67
\issue 3
\pages 471--488
\mathnet{http://mi.mathnet.ru/tvp5499}
\crossref{https://doi.org/10.4213/tvp5499}
\transl
\jour Theory Probab. Appl.
\yr 2022
\vol 67
\issue 3
\pages 375--388
\crossref{https://doi.org/10.1137/S0040585X97T991003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85152055144}
Linking options:
  • https://www.mathnet.ru/eng/tvp5499
  • https://doi.org/10.4213/tvp5499
  • https://www.mathnet.ru/eng/tvp/v67/i3/p471
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025