Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2024, Volume 69, Issue 3, Pages 536–562
DOI: https://doi.org/10.4213/tvp5526
(Mi tvp5526)
 

Affine diminishing urns

Sh. Gao, H. Mahmoud

Department of Statistics, The George Washington University, Washington, DC, USA
References:
Abstract: We consider a large class of white-blue affine balanced urns diminished by the repeated drawing of multisets. We investigate the composition of the urn at different stages of drawing. Assuming the urn starts with $n$ balls, of which $\alpha n + g(n)$, with $\alpha \in [0,1]$ and $g(n) = o(n)$, are white, we find a major phase transition between a sublinear number of draws $j = o(n)$ and the linear case in which $j = \theta n + h(n)$. In both sublinear and linear phases, we get central limit theorems; however, the normalization in each phase is significantly different. The interplay of the different forces, such as $\theta$, $\alpha$, and the perturbation functions $g(n)$ and $h(n)$, enforce a number of restrictions and influences the parameterization in the central limit theorem. The methods of proof are based on recurrence, martingales, and asymptotic analysis. We then discuss two possible applications of this class. One application is a generalized OK Corral urn, and the other is on the dynamics of market depth in the stock market.
Keywords: urn model, random structure, martingale, phase transition, central limit theorem.
Received: 11.08.2021
Revised: 12.01.2023
Accepted: 31.10.2023
Published: 23.07.2024
English version:
Theory of Probability and its Applications, 2024, Volume 69, Issue 3, Pages 425–447
DOI: https://doi.org/10.1137/S0040585X97T992021
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Sh. Gao, H. Mahmoud, “Affine diminishing urns”, Teor. Veroyatnost. i Primenen., 69:3 (2024), 536–562; Theory Probab. Appl., 69:3 (2024), 425–447
Citation in format AMSBIB
\Bibitem{GaoMah24}
\by Sh.~Gao, H.~Mahmoud
\paper Affine diminishing urns
\jour Teor. Veroyatnost. i Primenen.
\yr 2024
\vol 69
\issue 3
\pages 536--562
\mathnet{http://mi.mathnet.ru/tvp5526}
\crossref{https://doi.org/10.4213/tvp5526}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4914715}
\transl
\jour Theory Probab. Appl.
\yr 2024
\vol 69
\issue 3
\pages 425--447
\crossref{https://doi.org/10.1137/S0040585X97T992021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85209115035}
Linking options:
  • https://www.mathnet.ru/eng/tvp5526
  • https://doi.org/10.4213/tvp5526
  • https://www.mathnet.ru/eng/tvp/v69/i3/p536
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025