Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2025, Volume 70, Issue 1, Pages 29–44
DOI: https://doi.org/10.4213/tvp5694
(Mi tvp5694)
 

This article is cited in 1 scientific paper (total in 1 paper)

Approximation of sums of locally dependent random variables via perturbations of Stein operator

Zh. Sua, V. V. Ulyanovbc, S. Wana

a School of Mathematical Sciences, Zhejiang University, Hangzhou, China
b Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
c National Research University Higher School of Economics, Moscow
References:
Abstract: Let $(X_i,\, i\in J)$ be a family of locally dependent nonnegative integer-valued random variables (r.v.'s), and consider a sum $W=\sum_{i\in J}X_i$. Applying the Stein method, we prove an upper bound for total variation distance $d_{\mathrm{TV}}(W, M)$, where an approximating r.v. $M$ has the distribution, which is a mixture of Poisson distribution with either binomial or negative binomial distribution. As a corollary of general results, we get approximation errors of order $O(|J|^{-1})$ for the distributions of ($k_1,k_2$)-runs and $k$-runs. The results obtained are significantly better than the previously known estimates, e.g., $O(|J|^{-0.5})$ [E. Peköz, A. Röllin, and N. Ross, Bernoulli, 19 (2013), pp. 610–632] and $O(1)$ [N. Upadhye, V. Čekanavičius, and P. Vellaisamy, Bernoulli, 23 (2017), pp. 2828–2859].
Keywords: local dependence structure, Stein's method, total variation distance, $(k_1,k_2)$-runs.
Received: 22.12.2023
Revised: 14.10.2024
Published: 27.01.2025
English version:
Theory of Probability and its Applications, 2025, Volume 70, Issue 1, Pages 24–36
DOI: https://doi.org/10.1137/S0040585X97T992215
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Zh. Su, V. V. Ulyanov, S. Wan, “Approximation of sums of locally dependent random variables via perturbations of Stein operator”, Teor. Veroyatnost. i Primenen., 70:1 (2025), 29–44; Theory Probab. Appl., 70:1 (2025), 24–36
Citation in format AMSBIB
\Bibitem{SuUlyWan25}
\by Zh.~Su, V.~V.~Ulyanov, S.~Wan
\paper Approximation of sums of locally dependent random variables via perturbations of Stein operator
\jour Teor. Veroyatnost. i Primenen.
\yr 2025
\vol 70
\issue 1
\pages 29--44
\mathnet{http://mi.mathnet.ru/tvp5694}
\crossref{https://doi.org/10.4213/tvp5694}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4915317}
\transl
\jour Theory Probab. Appl.
\yr 2025
\vol 70
\issue 1
\pages 24--36
\crossref{https://doi.org/10.1137/S0040585X97T992215}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105007013853}
Linking options:
  • https://www.mathnet.ru/eng/tvp5694
  • https://doi.org/10.4213/tvp5694
  • https://www.mathnet.ru/eng/tvp/v70/i1/p29
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025