Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2025, Volume 70, Issue 1, Pages 3–28
DOI: https://doi.org/10.4213/tvp5724
(Mi tvp5724)
 

A branching process in a random environment, starting with a large number of particles

V. I. Afanasyev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: Let $Z^{(k)}=\{ Z_i^{(k)},\, i=0,1,\dots\}$, $k=1,2,\dots$, be a sequence of critical branching processes in random environment, which differ from one another only in the population size $k$ of the initial generation. Suppose that the variance $\sigma^2$ of the step of the associated random walk is finite and positive. We fix $x\in (0,+\infty)$ and define $Z^{(n,x)}=Z^{(m_n(x))}$, where $m_1(x),m_2(x),\dots$ is a sequence of natural numbers, and $\ln m_n(x) \sim \sigma \sqrt{n}\, x$ as $n\to\infty$. We prove limit theorems on the extinction moment of the process $Z^{(n,x)}$, on the time-continuous normalized process constructed from $Z^{(n,x)}$, and on the normalized logarithm of the process $Z^{(n,x)}$.
Keywords: critical branching process in random environment, limit theorem, functional limit theorem.
Funding agency Grant number
Russian Science Foundation 24-11-00037
Received: 19.05.2024
Revised: 23.09.2024
Accepted: 30.10.2024
Published: 27.01.2025
English version:
Theory of Probability and its Applications, 2025, Volume 70, Issue 1, Pages 1–23
DOI: https://doi.org/10.1137/S0040585X97T992203
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Afanasyev, “A branching process in a random environment, starting with a large number of particles”, Teor. Veroyatnost. i Primenen., 70:1 (2025), 3–28; Theory Probab. Appl., 70:1 (2025), 1–23
Citation in format AMSBIB
\Bibitem{Afa25}
\by V.~I.~Afanasyev
\paper A branching process in a random environment, starting with a large number of particles
\jour Teor. Veroyatnost. i Primenen.
\yr 2025
\vol 70
\issue 1
\pages 3--28
\mathnet{http://mi.mathnet.ru/tvp5724}
\crossref{https://doi.org/10.4213/tvp5724}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4915316}
\transl
\jour Theory Probab. Appl.
\yr 2025
\vol 70
\issue 1
\pages 1--23
\crossref{https://doi.org/10.1137/S0040585X97T992203}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105006934789}
Linking options:
  • https://www.mathnet.ru/eng/tvp5724
  • https://doi.org/10.4213/tvp5724
  • https://www.mathnet.ru/eng/tvp/v70/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025