Abstract:
Let $Z^{(k)}=\{ Z_i^{(k)},\, i=0,1,\dots\}$, $k=1,2,\dots$, be a sequence of
critical branching processes in random environment, which differ from one
another only in the population size $k$ of the initial generation. Suppose
that the variance $\sigma^2$ of the step of the associated random walk is
finite and positive. We fix $x\in (0,+\infty)$ and define
$Z^{(n,x)}=Z^{(m_n(x))}$, where $m_1(x),m_2(x),\dots$ is a sequence of
natural numbers, and $\ln m_n(x) \sim \sigma \sqrt{n}\, x$ as $n\to\infty$.
We prove limit theorems on the extinction moment of the process $Z^{(n,x)}$,
on the time-continuous normalized process constructed from $Z^{(n,x)}$, and
on the normalized logarithm of the process $Z^{(n,x)}$.
Keywords:
critical branching process in random environment, limit theorem,
functional limit theorem.
Citation:
V. I. Afanasyev, “A branching process in a random environment, starting with a large number of particles”, Teor. Veroyatnost. i Primenen., 70:1 (2025), 3–28; Theory Probab. Appl., 70:1 (2025), 1–23
\Bibitem{Afa25}
\by V.~I.~Afanasyev
\paper A branching process in a random environment, starting with a large number of particles
\jour Teor. Veroyatnost. i Primenen.
\yr 2025
\vol 70
\issue 1
\pages 3--28
\mathnet{http://mi.mathnet.ru/tvp5724}
\crossref{https://doi.org/10.4213/tvp5724}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4915316}
\transl
\jour Theory Probab. Appl.
\yr 2025
\vol 70
\issue 1
\pages 1--23
\crossref{https://doi.org/10.1137/S0040585X97T992203}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105006934789}