|
|
Teoriya Veroyatnostei i ee Primeneniya, 1966, Volume 11, Issue 2, Pages 240–259
(Mi tvp619)
|
|
|
|
This article is cited in 232 scientific papers (total in 232 papers)
On stochastic processes defined by differential equations
R. Z. Khas'minskii Moscow
Abstract:
Let the function $X_\varepsilon(\tau,\omega)$ be the solution of the problem (1.3). The main results of this paper are the following theorems.
Theorem 1. {\it If the function $F$ satisfies conditions (1.1), (1.2) and (1.4) the stochastic process $X_\varepsilon(\tau,\omega)$ has the following asymptotic behaviour
$$
\sup_{0\le\tau\le\tau_0}\mathbf M|X_\varepsilon(\tau,\omega)-x^0(\tau)|\to0\quad(\varepsilon\to0),
$$
where $x^0(\tau)$ is the solution of the problem} (1.5).
Theorem 2. {\it If $F$ satisfies conditions (3.1)–(3.4) and $\varepsilon\to0$ $n$-order distributions of the stochastic process $Y^{(\varepsilon)}(\tau,\omega)=\varepsilon^{-1/2}(X^{(\varepsilon)}(\tau,\omega)-x^0(\tau))$ approach those of the Gaussian Markov process} (3.6), (3.7).
In addition some applications of these theorems to problems of nonlinear mechanics are considered.
Received: 26.04.1965
Citation:
R. Z. Khas'minskii, “On stochastic processes defined by differential equations”, Teor. Veroyatnost. i Primenen., 11:2 (1966), 240–259; Theory Probab. Appl., 11:2 (1966), 211–228
Linking options:
https://www.mathnet.ru/eng/tvp619 https://www.mathnet.ru/eng/tvp/v11/i2/p240
|
|