|
|
Teoriya Veroyatnostei i ee Primeneniya, 1967, Volume 12, Issue 4, Pages 595–618
(Mi tvp749)
|
|
|
|
This article is cited in 29 scientific papers (total in 29 papers)
Existence and continuity of pressure in classic statistical physics
R. L. Dobrushina, R. A. Minlos a Moscow
Abstract:
Let $U(y)$ be a potential such that
\begin{gather*}
U(y)\ge\psi(y),\quad0\le y\le a,\quad\psi(y),\ y^r\to\infty,\quad y\to0,
\\
|U(y)|\le C|y|^{-(r+\varepsilon)},\quad y>a,\quad\varepsilon>0,\quad C<\infty
\end{gather*}
where $\psi(y)$ is a monotone function. Let $\frac{|\Omega_N|}N\to v$, $0<v<\infty$, where $|\Omega_N|$ is the volume of an $r$-dimensional cube $\Omega_N$, and put
$$
f(v,\beta)=\lim_{N\to\infty}\frac1N\ln\int_{\Omega_N}\dots\int_{\Omega_N}\exp\biggl\{-\beta\sum_{i\ne j}U(|x_i-x_j|)\biggr\}dx_1\dots dx_N.
$$
It is proved that $\frac{\partial f(v,\beta)}{\partial v}$ exists and is continuous.
Received: 28.06.1966
Citation:
R. L. Dobrushin, R. A. Minlos, “Existence and continuity of pressure in classic statistical physics”, Teor. Veroyatnost. i Primenen., 12:4 (1967), 595–618; Theory Probab. Appl., 12:4 (1967), 535–559
Linking options:
https://www.mathnet.ru/eng/tvp749 https://www.mathnet.ru/eng/tvp/v12/i4/p595
|
|