Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1980, Volume 25, Issue 1, Pages 30–43 (Mi tvp952)  

This article is cited in 10 scientific papers (total in 10 papers)

On sequential estimation under the conditions of the local asymptotic normality

S. Yu. Efroĭmovič

Moscow
Abstract: Let $\mathscr E_n=\{\mathbf P_{n,\theta};\theta\in\Theta\}$ be a sequence of families of probability measures and $l(x)$ be a loss function such that $l(x)=l(-x)$, $l(x)\ge l(z)$ if $|x|\ge|z|$,
$$ \psi(\mu)=\int l(x/\mu)e^{-x^2/2}\,dx<\infty\qquad\text{and}\qquad\psi(\mu)\to 0,\quad \mu\to\infty. $$

Theorem 1. {\it Let $\mathscr E_n$ be locally asymptotically normal at the point $t\in\Theta$ and $(\{T_m^{(n)}\},\tau_n)$ be a sequence of sequential estimation procedures. Then for arbitrary positive constants $\gamma$, $\varepsilon$, $\delta$ there exist $b_0(\gamma,\varepsilon,\delta)$ and $n_0(\gamma,\varepsilon,\delta,b)$ such that for $b\ge b_0(\gamma,\varepsilon,\delta)$ and $n\ge n_0(\gamma,\varepsilon,\delta,b)$ inequality (2) is valid.}
As a consequence of this theorem we show that if $\tilde l(1/\mu)$ is convex function of $\mu$ and (3) holds, then the inequality (4) is valid. Asymptotical normality and local asymptotical minimax properties of maximum likelihood, Bayes and generalized Bayes estimates are established.
Received: 14.07.1977
English version:
Theory of Probability and its Applications, 1980, Volume 25, Issue 1, Pages 27–40
DOI: https://doi.org/10.1137/1125003
Bibliographic databases:
Language: Russian
Citation: S. Yu. Efroǐmovič, “On sequential estimation under the conditions of the local asymptotic normality”, Teor. Veroyatnost. i Primenen., 25:1 (1980), 30–43; Theory Probab. Appl., 25:1 (1980), 27–40
Citation in format AMSBIB
\Bibitem{Efr80}
\by S.~Yu.~Efro{\v\i}movi{\v{c}}
\paper On sequential estimation under the conditions of the local asymptotic normality
\jour Teor. Veroyatnost. i Primenen.
\yr 1980
\vol 25
\issue 1
\pages 30--43
\mathnet{http://mi.mathnet.ru/tvp952}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=560055}
\zmath{https://zbmath.org/?q=an:0467.62072|0424.62056}
\transl
\jour Theory Probab. Appl.
\yr 1980
\vol 25
\issue 1
\pages 27--40
\crossref{https://doi.org/10.1137/1125003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980LG24200003}
Linking options:
  • https://www.mathnet.ru/eng/tvp952
  • https://www.mathnet.ru/eng/tvp/v25/i1/p30
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025