1. P. G. Grinevich, S. P. Novikov, “Topological phenomena in the real periodic sine-Gordon theory”, Journal of Mathematical Physics, 44:8 (2003), 3174  crossref
  2. P. G. Grinevich, S. P. Novikov, “Topological charge of the real periodic finite‐gap Sine‐Gordon solutions”, Comm Pure Appl Math, 56:7 (2003), 956  crossref
  3. Yu. V. Brezhnev, “Finite-Band Potentials with Trigonal Curves”, Theoret. and Math. Phys., 133:3 (2002), 1657–1662  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  4. Krichever, I, “Periodic and almost-periodic potentials in inverse problems”, Inverse Problems, 15:6 (1999), R117  isi
  5. Iosif Polterovich, “From Agmon–Kannai Expansion to Korteweg–de Vries Hierarchy”, Letters in Mathematical Physics, 49:1 (1999), 71  crossref
  6. A.R. Osborne, M. Serio, L. Bergamasco, L. Cavaleri, “Solitons, cnoidal waves and nonlinear interactions in shallow-water ocean surface waves”, Physica D: Nonlinear Phenomena, 123:1-4 (1998), 64  crossref
  7. Martin Schwarz, “Involutive Functionals, Infinite Dimensional Tori, and Neighboring Tori”, Journal of Functional Analysis, 158:1 (1998), 89  crossref
  8. I. A. Taimanov, “Secants of Abelian varieties, theta functions, and soliton equations”, Russian Math. Surveys, 52:1 (1997), 147–218  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  9. Percy Deift, Thomas Kriecherbauer, Stephanos Venakides, “Forced lattice vibrations: Part II”, Comm Pure Appl Math, 48:11 (1995), 1251  crossref
  10. A. R. Osborne, “Solitons in the periodic Korteweg–de Vries equation, theFTHETA-function representation, and the analysis of nonlinear, stochastic wave trains”, Phys. Rev. E, 52:1 (1995), 1105  crossref
  11. A. R. Osborne, M. Petti, “Laboratory-generated, shallow-water surface waves: Analysis using the periodic, inverse scattering transform”, Physics of Fluids, 6:5 (1994), 1727  crossref
  12. A. R. Osborne, “Numerical construction of nonlinear wave-train solutions of the periodic Korteweg–de Vries equation”, Phys. Rev. E, 48:1 (1993), 296  crossref
  13. Martin Schwarz, “Commuting flows and invariant tori: Korteweg-de Vries”, Advances in Mathematics, 89:2 (1991), 192  crossref
  14. A.R. Osborne, E. Segre, “Numerical solutions of the Korteweg-de Vries equation using the periodic scattering transform μ-representation”, Physica D: Nonlinear Phenomena, 44:3 (1990), 575  crossref
  15. J. E. Lee, M. P. Tsui, Research Reports in Physics, Nonlinear Evolution Equations and Dynamical Systems, 1990, 94  crossref
  16. John P. Boyd, Advances in Applied Mechanics, 27, Advances in Applied Mechanics Volume 27, 1989, 1  crossref
  17. Allan Finkel, Eli Isaacson, Eugene Trubowitz, “An Explicit Solution of the Inverse Periodic Problem for Hill's Equation”, SIAM J. Math. Anal., 18:1 (1987), 46  crossref
  18. E. D. Belokolos, A. I. Bobenko, V. B. Matveev, V. Z. Ènol'skii, “Algebraic-geometric principles of superposition of finite-zone solutions of integrable non-linear equations”, Russian Math. Surveys, 41:2 (1986), 1–49  mathnet  crossref  mathscinet  zmath  isi
  19. I. M. Krichever, “Spectral theory of finite-zone nonstationary Schrödinger operators. A nonstationary Peierls model”, Funct. Anal. Appl., 20:3 (1986), 203–214  mathnet  mathnet  crossref  isi
  20. Björn Birnir, “Singularities of the complex korteweg‐de vries flows”, Comm Pure Appl Math, 39:3 (1986), 283  crossref
Previous
1
2
3
4
5
6
7
8
Next