-
P. G. Grinevich, S. P. Novikov, “Topological phenomena in the real periodic sine-Gordon theory”, Journal of Mathematical Physics, 44:8 (2003), 3174
-
P. G. Grinevich, S. P. Novikov, “Topological charge of the real periodic finite‐gap Sine‐Gordon solutions”, Comm Pure Appl Math, 56:7 (2003), 956
-
Yu. V. Brezhnev, “Finite-Band Potentials with Trigonal Curves”, Theoret. and Math. Phys., 133:3 (2002), 1657–1662
-
Krichever, I, “Periodic and almost-periodic potentials in inverse problems”, Inverse Problems, 15:6 (1999), R117
-
Iosif Polterovich, “From Agmon–Kannai Expansion to Korteweg–de Vries Hierarchy”, Letters in Mathematical Physics, 49:1 (1999), 71
-
A.R. Osborne, M. Serio, L. Bergamasco, L. Cavaleri, “Solitons, cnoidal waves and nonlinear interactions in shallow-water ocean surface waves”, Physica D: Nonlinear Phenomena, 123:1-4 (1998), 64
-
Martin Schwarz, “Involutive Functionals, Infinite Dimensional Tori, and Neighboring Tori”, Journal of Functional Analysis, 158:1 (1998), 89
-
I. A. Taimanov, “Secants of Abelian varieties, theta functions, and soliton equations”, Russian Math. Surveys, 52:1 (1997), 147–218
-
Percy Deift, Thomas Kriecherbauer, Stephanos Venakides, “Forced lattice vibrations: Part II”, Comm Pure Appl Math, 48:11 (1995), 1251
-
A. R. Osborne, “Solitons in the periodic Korteweg–de Vries equation, theFTHETA-function representation, and the analysis of nonlinear, stochastic wave trains”, Phys. Rev. E, 52:1 (1995), 1105
-
A. R. Osborne, M. Petti, “Laboratory-generated, shallow-water surface waves: Analysis using the periodic, inverse scattering transform”, Physics of Fluids, 6:5 (1994), 1727
-
A. R. Osborne, “Numerical construction of nonlinear wave-train solutions of the periodic Korteweg–de Vries equation”, Phys. Rev. E, 48:1 (1993), 296
-
Martin Schwarz, “Commuting flows and invariant tori: Korteweg-de Vries”, Advances in Mathematics, 89:2 (1991), 192
-
A.R. Osborne, E. Segre, “Numerical solutions of the Korteweg-de Vries equation using the periodic scattering transform μ-representation”, Physica D: Nonlinear Phenomena, 44:3 (1990), 575
-
J. E. Lee, M. P. Tsui, Research Reports in Physics, Nonlinear Evolution Equations and Dynamical Systems, 1990, 94
-
John P. Boyd, Advances in Applied Mechanics, 27, Advances in Applied Mechanics Volume 27, 1989, 1
-
Allan Finkel, Eli Isaacson, Eugene Trubowitz, “An Explicit Solution of the Inverse Periodic Problem for Hill's Equation”, SIAM J. Math. Anal., 18:1 (1987), 46
-
E. D. Belokolos, A. I. Bobenko, V. B. Matveev, V. Z. Ènol'skii, “Algebraic-geometric principles of superposition of finite-zone solutions of integrable non-linear equations”, Russian Math. Surveys, 41:2 (1986), 1–49
-
I. M. Krichever, “Spectral theory of finite-zone nonstationary Schrödinger operators. A nonstationary Peierls model”, Funct. Anal. Appl., 20:3 (1986), 203–214
-
Björn Birnir, “Singularities of the complex korteweg‐de vries flows”, Comm Pure Appl Math, 39:3 (1986), 283