1. Björn Birnir, “Complex hill's equation and the complex periodic korteweg‐de vries equations”, Comm Pure Appl Math, 39:1 (1986), 1  crossref
  2. H. P. McKean, “Variation on a theme of Jacobi”, Comm Pure Appl Math, 38:5 (1985), 669  crossref
  3. Harvey Segur, Allan Finkel, “An Analytical Model of Periodic Waves in Shallow Water”, Stud Appl Math, 73:3 (1985), 183  crossref
  4. Mutiara Buys, Allan Finkel, “The inverse periodic problem for Hill's equation with a finite-gap potential”, Journal of Differential Equations, 55:2 (1984), 257  crossref
  5. I. M. Krichever, “Nonlinear equations and elliptic curves”, J. Soviet Math., 28:1 (1985), 51–90  mathnet  mathnet  crossref
  6. Yan‐Chow Ma, Mark J. Ablowitz, “The Periodic Cubic Schrõdinger Equation”, Stud Appl Math, 65:2 (1981), 113  crossref
  7. Ryogo Hirota, Masaaki Ito, “A Direct Approach to Multi-Periodic Wave Solutions to Nonlinear Evolution Equations”, J. Phys. Soc. Jpn., 50:1 (1981), 338  crossref
  8. R. K. Bullough, P. J. Caudrey, Topics in Current Physics, 17, Solitons, 1980, 1  crossref
  9. Jean-Louis Verdier, Lecture Notes in Mathematics, 710, Séminaire Bourbaki vol. 1977/78 Exposés 507–524, 1979, 101  crossref
  10. S. P. Novikov, Lecture Notes in Physics, 80, Mathematical Problems in Theoretical Physics, 1978, 222  crossref
  11. H. P. McKean, “Stability for the korteweg‐de vries equation”, Comm Pure Appl Math, 30:3 (1977), 347  crossref
  12. B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146  mathnet  crossref  mathscinet  zmath
  13. B. A. Dubrovin, “Konechnozonnye lineinye differentsialnye operatory i abelevy mnogoobraziya”, UMN, 31:4(190) (1976), 259–260  mathnet  mathscinet  zmath
  14. H. P. McKean, E. Trubowitz, “Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points”, Comm Pure Appl Math, 29:2 (1976), 143  crossref
  15. E. Date, S. Tanaka, “Analogue of Inverse Scattering Theory for the Discrete Hill's Equation and Exact Solutions for the Periodic Toda Lattice”, Progress of Theoretical Physics, 55:2 (1976), 457  crossref
  16. Robert M. Miura, “The Korteweg–deVries Equation: A Survey of Results”, SIAM Rev., 18:3 (1976), 412  crossref
  17. Hermann Flaschka, David W. McLaughlin, Lecture Notes in Mathematics, 515, Bäcklund Transformations, the Inverse Scattering Method, Solitons, and Their Applications, 1976, 253  crossref
  18. A. R. Its, V. B. Matveev, “Schrödinger operators with finite-gap spectrum and $N$-soliton solutions of the Korteweg–de Vries equation”, Theoret. and Math. Phys., 23:1 (1975), 343–355  mathnet  crossref  mathscinet
  19. I. M. Krichever, “Potentials with zero coefficient of reflection on a background of finite-zone potentials”, Funct. Anal. Appl., 9:2 (1975), 161–163  mathnet  crossref  mathscinet  zmath
  20. B. A. Dubrovin, “Periodic problems for the Korteweg–de Vries equation in the class of finite band potentials”, Funct. Anal. Appl., 9:3 (1975), 215–223  mathnet  crossref  mathscinet  zmath
Previous
1
2
3
4
5
6
7
8
Next