Аннотация:
We show that the smooth theta divisors of general principally polarised abelian varieties can be chosen as irreducible algebraic representatives of the coefficients of the Chern-Dold character in complex cobordisms and describe the action of the Landweber-Novikov operations on them. We introduce a quantisation of the complex cobordism theory with the dual Landweber-Novikov algebra as the deformation parameter space and show that the Chern-Dold character can be interpreted as the composition of quantisation and dequantisation maps. Some smooth real-analytic representatives of the cobordism classes of theta divisors are described in terms of the classical Weierstrass elliptic functions. The link with the Milnor-Hirzebruch problem about possible characteristic numbers of irreducible algebraic varieties is discussed.
Поступила в редакцию: 06.03.2023 Исправленный вариант: 13.03.2024 Принята в печать: 04.05.2024
В. М. Бухштабер, Ф. Ю. Попеленский, “Когомологии алгебр Хопфа и произведения Масси”, УМН, 79:4 (2024), 5–94 [V. M. Bukhshtaber, F. Yu. Popelenskii, “Cohomology of Hopf algebras and Massey products”, Uspekhi Mat. Nauk, 79:4 (2024), 5–94]
В. М. Бухштабер, А. П. Веселов, “Многочлены Тодда и числа Хирцебруха”, Труды МИАН, 325 (2024), 81–92; V. M. Buchstaber, A. P. Veselov, “Todd Polynomials and Hirzebruch Numbers”, Proc. Steklov Inst. Math., 325 (2024), 74–85
В. М. Бухштабер, Ф. Ю. Попеленский, “Когомологии алгебр Хопфа и произведения Масси”, УМН, 79:4 (2024), 5–94; V. M. Buchstaber, F. Yu. Popelenskii, “Cohomology of Hopf algebras and Massey products”, Russian Math. Surveys, 79:4 (2024), 567–648