Аннотация:
Infinite determinantal measures introduced in this note are inductive limits of determinantal measures on an exhausting family of subsets
of the phase space. Alternatively, an infinite determinantal measure can be
described as a product of a determinantal point process and a convergent, but
not integrable, multiplicative functional.
Theorem 4.1, the main result announced in this note, gives an explicit
description for the ergodic decomposition of infinite Pickrell measures on the
spaces of infinite complex matrices in terms of infinite determinantal measures
obtained by finite-rank perturbations of Bessel point processes.
This work has been supported in part by an Alfred P. Sloan Research Fellowship, a Dynasty
Foundation Fellowship, as well as an IUM-Simons Fellowship, by the Grant MK-6734.2012.1 of the
President of the Russian Federation, by the Programme “Dynamical systems and mathematical
control theory” of the Presidium of the Russian Academy of Sciences, by the RFBR-CNRS grant
10-01-93115-NTsNIL and by the RFBR grant 11-01-00654
Поступила в редакцию: 29.07.2012 Исправленный вариант: 26.11.2012
A. Bufetov, A. I. Bufetov, “A Palm hierarchy for determinantal point processes with the confluent hypergeometric kernel, which resolves the problem of harmonic analysis on the infinite-dimensional unitary group”, St. Petersburg Math. J., 35:5 (2024), 769
Tom Claeys, Gabriel Glesner, “Determinantal point processes conditioned on randomly incomplete configurations”, Ann. Inst. H. Poincaré Probab. Statist., 59:4 (2023)
Alexander I. Bufetov, Fabio Deelan Cunden, Yanqi Qiu, “Conditional measures for Pfaffian point processes: conditioning on a bounded domain”, Ann. Inst. H. Poincaré Probab. Statist., 57:2 (2021), 856–871
Alexander I. Bufetov, Andrey V. Dymov, Hirofumi Osada, “The logarithmic derivative for point processes with equivalent Palm measures”, J. Math. Soc. Japan, 71:2 (2019), 451–469
Alexander I. Bufetov, “Quasi-symmetries of determinantal point processes”, Ann. Probab., 46:2 (2018)
Alexander I. Bufetov, Yanqi Qiu, “The explicit formulae for scaling limits in the ergodic decomposition of infinite Pickrell measures”, Ark. Mat., 54:2 (2016), 403–435
А. И. Буфетов, “Бесконечные детерминантные меры и эргодическое разложение бесконечных мер Пикрелла. II. Сходимость бесконечных детерминантных мер”, Изв. РАН. Сер. матем., 80:2 (2016), 16–32; A. I. Bufetov, “Infinite determinantal measures and the ergodic decomposition of infinite
Pickrell measures. II. Convergence of infinite determinantal measures”, Izv. Math., 80:2 (2016), 299–315
А. И. Буфетов, “Бесконечные детерминантные меры и эргодическое разложение бесконечных мер Пикрелла. I. Построение бесконечных детерминантных мер”, Изв. РАН. Сер. матем., 79:6 (2015), 18–64; A. I. Bufetov, “Infinite determinantal measures and the ergodic decomposition of infinite Pickrell measures. I. Construction of infinite determinantal measures”, Izv. Math., 79:6 (2015), 1111–1156
А. И. Буфетов, “Эргодическое разложение для мер, квазиинвариантных относительно борелевских действий индуктивно компактных групп”, Матем. сб., 205:2 (2014), 39–70; A. I. Bufetov, “Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group”, Sb. Math., 205:2 (2014), 192–219