|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
[Infinite determinantal measures]
A. I. Bufetovabcdef a The Steklov Institute of Mathematics, Moscow, Russia
b The Institute for Information Transmission Problems, Moscow, Russia
c The Independent University of Moscow, Russia
d Rice University, Houston, Texas, USA
e National Research University Higher School of Economics, Moscow, Russia
f Laboratoire d’Analyse, Topologie, Probabilités, Aix-Marseille Université, CNRS, Marseille, France
Аннотация:
Infinite determinantal measures introduced in this note are inductive limits of determinantal measures on an exhausting family of subsets
of the phase space. Alternatively, an infinite determinantal measure can be
described as a product of a determinantal point process and a convergent, but
not integrable, multiplicative functional.
Theorem 4.1, the main result announced in this note, gives an explicit
description for the ergodic decomposition of infinite Pickrell measures on the
spaces of infinite complex matrices in terms of infinite determinantal measures
obtained by finite-rank perturbations of Bessel point processes.
Поступила в редакцию: 29.07.2012 Исправленный вариант: 26.11.2012
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/erams1
|
Статистика просмотров: |
Страница аннотации: | 105 |
|