|
Математическое моделирование, 1996, том 8, номер 9, страницы 31–43
(Mi mm1617)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Proceedins of the International Conference on the Optimization of the Finite Element Approximations (OFEA-95), St.-Petersburg, 25–29 June 1995
Adaptive composite finite elements for the solution of PDEs containing nonuniformely distributed micro-scales
W. Hackbusch, S. A. Sauter Christian-Albrechts-Universität
Аннотация:
In this paper we will introduce Adaptive Composite Finite Elements as a discrete homogenization technique for partial differential equations having small micro-structures as, e.g., rough boundaries or jumping coefficients. These Finite Elements allow to discretize such problems only with a few degrees of freedom and still getting the required asymptotic approximation property. This method can be applied for both, a relatively crude approximation of the PDE and the application of multi-grid methods to problems where standard finite elements would always result in systems of equations having a huge number of unknowns.
Образец цитирования:
W. Hackbusch, S. A. Sauter, “Adaptive composite finite elements for the solution of PDEs containing nonuniformely distributed micro-scales”, Матем. моделирование, 8:9 (1996), 31–43
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mm1617 https://www.mathnet.ru/rus/mm/v8/i9/p31
|
Статистика просмотров: |
Страница аннотации: | 359 | PDF полного текста: | 145 | Первая страница: | 1 |
|