Loading [MathJax]/jax/output/SVG/config.js
Математическое моделирование
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Матем. моделирование:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Математическое моделирование, 2006, том 18, номер 10, страницы 123–126 (Mi mm2)  

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

Вейвлет базис $B_\varphi$-сплайнов для неравномерной сетки

Ю. К. Демьянович

Санкт-Петербургский государственный университет
Список литературы:
Аннотация: Рассматривается вейвлетное разложение пространств $B_\varphi$-сплайнов на последовательности измельчающихся неравномерных сеток, строится вейвлетный базис, предлагаются простые решения некоторых интерполяционных задач в пространствах $B_\varphi$-сплайнов, а также даются соответствующие формулы декомпозиции и реконструкции.
Поступила в редакцию: 06.03.2006
Реферативные базы данных:
Образец цитирования: Ю. К. Демьянович, “Вейвлет базис $B_\varphi$-сплайнов для неравномерной сетки”, Матем. моделирование, 18:10 (2006), 123–126
Цитирование в формате AMSBIB
\RBibitem{Dem06}
\by Ю.~К.~Демьянович
\paper Вейвлет базис $B_\varphi$-сплайнов для неравномерной сетки
\jour Матем. моделирование
\yr 2006
\vol 18
\issue 10
\pages 123--126
\mathnet{http://mi.mathnet.ru/mm2}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2298618}
\zmath{https://zbmath.org/?q=an:1104.42300}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/mm2
  • https://www.mathnet.ru/rus/mm/v18/i10/p123
  • Эта публикация цитируется в следующих 2 статьяx:
    1. В. Т. Шевалдин, “Равномерные константы Лебега локальной сплайн-аппроксимации”, Тр. ИММ УрО РАН, 23, № 3, 2017, 292–299  mathnet  crossref  elib; V. T. Shevaldin, “Uniform Lebesgue constants of local spline approximation”, Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 196–202  crossref  isi
    2. В. Т. Шевалдин, “Двухмасштабные соотношения для аналогов базисных сплайнов малых степеней”, Тр. ИММ УрО РАН, 17, № 3, 2011, 319–323  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Статистика просмотров:
    Страница аннотации:470
    PDF полного текста:163
    Список литературы:70
    Первая страница:7
     
      Обратная связь:
    math-net2025_04@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025