Аннотация:
Рассматриваются пространства функций, аналитических вне данной ограниченной области $D$ и исчезающих в бесконечности. Для каждого $\alpha >-\frac 12$ вводится интегрально весовое нормированное пространство $B_2^\alpha (G)$ с весом $d^\alpha (z)$, где $d(z)$ — расстояние от точки $z$ до границы $G:=\mathbb{C} \setminus \overline{D}$. Для $\alpha =-\frac 12$ пространство $B_2^\alpha $ полагается равным пространству Смирнова. Доказывается, что для выпуклых областей $D$ норму в этих пространствах можно эквивалентно заменить на другие нормы, определяемые через производные. Так норма в пространстве Смирнова, вычисляемая как интеграл по длине дуги границы, эквивалентна некоторой норме, определяемой с помощью интегралов по плоской мере Лебега. Доказываемые результаты в частных случаях были получены при изучении задачи описания классов преобразований Коши функционалов на пространстве Бергмана на области $D$. Результаты в общем случае могут быть полезны при изучении преобразований Коши функционалов на весовых пространствах Бергмана.
Исследование первого автора выполнено за счет гранта Российского научного фонда (проект № 18-11-00002), работа второго и третьего авторов поддержана РФФИ (проект 18-01-00095 А).
Образец цитирования:
Н. Ф. Абузярова, К. П. Исаев, Р. С. Юлмухаметов, “Эквивалентность норм аналитических функций на внешности выпуклой области”, Уфимск. матем. журн., 10:4 (2018), 3–11; Ufa Math. J., 10:4 (2018), 3–11