Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Tapkin, Danil' Tagirzyanovich

E-mail:

https://www.mathnet.ru/eng/person108134
List of publications on Google Scholar
https://orcid.org/0000-0003-0828-4397

Publications in Math-Net.Ru Citations
2025
1. A. N. Abyzov, D. T. Tapkin, “Fields over which matrices can be represented as the sum of potent and nilpotent matrices”, Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 10,  78–82  mathnet
2024
2. D. T. Tapkin, “The second-kind involutions of upper triangular matrix algebras”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 11,  105–110  mathnet; Russian Math. (Iz. VUZ), 68:11 (2024), 91–95
3. A. N. Abyzov, D. T. Tapkin, “Representability of matrices over commutative rings as sums of two potent matrices”, Sibirsk. Mat. Zh., 65:6 (2024),  1039–1060  mathnet; Siberian Math. J., 65:6 (2024), 1227–1245 2
2023
4. A. N. Abyzov, D. T. Tapkin, “Rings, matrices over which are representable as the sum of two potent matrices”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 12,  90–94  mathnet; Russian Math. (Iz. VUZ), 67:12 (2023), 82–85 2
5. I. A. Kulguskin, D. T. Tapkin, “Involutions in algebras of upper-triangular matrices”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 6,  11–30  mathnet; Russian Math. (Iz. VUZ), 67:6 (2023), 8–25 2
2021
6. A. N. Abyzov, D. T. Tapkin, “Rings over which matrices are sums of idempotent and $q$-potent matrices”, Sibirsk. Mat. Zh., 62:1 (2021),  3–18  mathnet  elib; Siberian Math. J., 62:1 (2021), 1–13  isi  scopus 7
2019
7. A. N. Abyzov, A. A. Tuganbaev, D. T. Tapkin, T. C. Quynh, “Direct projective modules, direct injective modules, and their generalizations”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 164 (2019),  125–139  mathnet  mathscinet
2018
8. D. T. Tapkin, “Isomorphisms of formal matrix rings with zero trace ideals”, Sibirsk. Mat. Zh., 59:3 (2018),  659–675  mathnet  elib; Siberian Math. J., 59:3 (2018), 523–535  isi  scopus 4
2017
9. D. T. Tapkin, “Isomorphisms of formal matrix incidence rings”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 12,  84–91  mathnet; Russian Math. (Iz. VUZ), 61:12 (2017), 73–79  isi  scopus 7
2015
10. D. T. Tapkin, “Generalized matrix rings and generalization of incidence algebras”, Chebyshevskii Sb., 16:3 (2015),  422–449  mathnet  elib 5
11. A. N. Abyzov, D. T. Tapkin, “On certain classes of rings of formal matrices”, Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 3,  3–14  mathnet; Russian Math. (Iz. VUZ), 59:3 (2015), 1–12  scopus 12
12. A. N. Abyzov, D. T. Tapkin, “Formal matrix rings and their isomorphisms”, Sibirsk. Mat. Zh., 56:6 (2015),  1199–1214  mathnet  mathscinet  elib; Siberian Math. J., 56:6 (2015), 955–967  isi  scopus 15

Presentations in Math-Net.Ru
1. Involutive polynomials that vanish on matrices
D. T. Tapkin
Functional Analysis and Quantum Systems
November 19, 2025 17:30
2. Инволюции и автоморфизмы в алгебре формальных матриц
D. T. Tapkin

November 8, 2022 15:40

Organisations