|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
S. S. Volosivets, “Integrability and Boas type results for a generalized Fourier–Bessel transform”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 9, 3–15 |
2. |
N. Yu. Agafonova, S. S. Volosivets, “Integrability of series with respect to multiplicative systems and generalized derivatives”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 3, 3–14 |
3. |
S. S. Volosivets, “Generalized Multiple Multiplicative Fourier Transform and Estimates of Integral Moduli of Continuity”, Mat. Zametki, 115:4 (2024), 578–588 ; Math. Notes, 115:4 (2024), 528–537 |
4. |
S. S. Volosivets, “Estimates for the second Hankel–Clifford transform and Titchmarsh equivalence theorem”, Probl. Anal. Issues Anal., 13(31):2 (2024), 144–154 |
|
2023 |
5. |
S. S. Volosivets, Yu. I. Krotova, “Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform”, Mat. Zametki, 114:1 (2023), 68–80 ; Math. Notes, 114:1 (2023), 55–65 |
1
|
6. |
S. S. Volosivets, “Weighted integrability results for first Hankel-Clifford transform”, Probl. Anal. Issues Anal., 12(30):2 (2023), 107–117 |
1
|
7. |
S. S. Volosivets, “Polynomial approximation with respect to multiplicative systems in the Morrey space”, Sibirsk. Mat. Zh., 64:1 (2023), 40–55 ; Siberian Math. J., 64:1 (2023), 33–47 |
1
|
|
2022 |
8. |
S. S. Volosivets, “Realization functionals and description of a modulus of smoothness in variable exponent Lebesgue spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 6, 13–25 ; Russian Math. (Iz. VUZ), 66:6 (2022), 8–19 |
1
|
9. |
S. S. Volosivets, B. I. Golubov, “Weighted Integrability of Multiple Multiplicative Fourier Transforms”, Mat. Zametki, 111:3 (2022), 365–374 ; Math. Notes, 111:3 (2022), 364–372 |
1
|
10. |
S. S. Volosivets, “Approximation by linear means of Fourier series and realization functionals in weighted Orlicz spaces”, Probl. Anal. Issues Anal., 11(29):2 (2022), 106–118 |
1
|
11. |
S. S. Volosivets, A. N. Mingachev, “Generalized absolute convergence of Fourier series with respect to multiplicative systems of functions of generalized bounded fluctuation”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022), 78–90 |
12. |
B. I. Golubov, S. S. Volosivets, “Fourier Transforms of Convolutions of Functions in Lebesgue and Lorentz Spaces”, Trudy Mat. Inst. Steklova, 319 (2022), 94–105 ; Proc. Steklov Inst. Math., 319 (2022), 85–96 |
|
2021 |
13. |
S. S. Volosivets, A. A. Tyuleneva, “Approximation properties of partial Fourier sums in the $p$-variation metric”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 200 (2021), 29–35 |
14. |
B. I. Golubov, S. S. Volosivets, “Fourier transform and continuity of functions of bounded $\Phi$-variation”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 199 (2021), 43–49 |
15. |
S. S. Volosivets, S. A. Krayukhin, “Criteria for a Function to Belong to the $p$-Variational Besov Space”, Mat. Zametki, 109:1 (2021), 27–35 ; Math. Notes, 109:1 (2021), 21–28 |
16. |
S. S. Volosivets, “Modified modulus of smoothness and approximation in weighted Lorentz spaces by Borel and Euler means”, Probl. Anal. Issues Anal., 10(28):1 (2021), 87–100 |
4
|
17. |
S. S. Volosivets, “Ulyanov-type embedding theorems for functions on zero-dimensional locally compact groups”, Sibirsk. Mat. Zh., 62:1 (2021), 42–54 ; Siberian Math. J., 62:1 (2021), 32–43 |
1
|
|
2020 |
18. |
S. S. Volosivets, “Hausdorff operators of special kind in $BMO$-type spaces and Hölder–Lipschitz spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 12, 8–21 ; Russian Math. (Iz. VUZ), 64:12 (2020), 6–19 |
19. |
S. S. Volosivets, M. A. Kuznetsova, “Generalized Absolute Convergence of Single and Double Series in Multiplicative Systems”, Mat. Zametki, 107:2 (2020), 195–209 ; Math. Notes, 107:2 (2020), 217–230 |
1
|
|
2019 |
20. |
S. S. Volosivets, B. I. Golubov, “Modified Hardy and Hardy–Littlewood fractional operators in Morrey–Herz spaces and their commutators in weighted spaces”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 171 (2019), 70–77 |
1
|
21. |
S. S. Volosivets, N. N. Zaitsev, “Martingale inequalities in symmetric spaces with semimultiplicative weight”, Izv. Saratov Univ. Math. Mech. Inform., 19:2 (2019), 126–133 |
22. |
S. S. Volosivets, B. I. Golubov, “Fractional modified Hardy and Hardy–Littlewood operators and their commutators”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 9, 16–26 ; Russian Math. (Iz. VUZ), 63:9 (2019), 12–21 |
1
|
23. |
S. S. Volosivets, “Double cosine-sine series and Nikol'skii classes in uniform metric”, Probl. Anal. Issues Anal., 8(26):3 (2019), 187–203 |
|
2018 |
24. |
S. S. Volosivets, A. A. Tyuleneva, “Estimates of best approximations of transformed Fourier series in $L^p$-norm and $p$-variational norm”, Fundam. Prikl. Mat., 22:1 (2018), 111–126 ; J. Math. Sci., 250:3 (2020), 463–474 |
25. |
S. S. Volosivets, B. I. Golubov, “Generalized absolute convergence of series from Fourier coeficients by systems of Haar type”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 1, 10–20 ; Russian Math. (Iz. VUZ), 62:1 (2018), 7–16 |
2
|
|
2017 |
26. |
S. S. Volosivets, A. E. Vezhlev, “Embeddings of generalized bounded variation function spaces into spaces of functions with given majorant of average modulus of continuity”, Izv. Saratov Univ. Math. Mech. Inform., 17:3 (2017), 255–266 |
27. |
S. S. Volosivets, M. A. Kuznetsova, “Multiplicative convolutions of functions from Lorentz spaces and convergence of series from Fourier–Vilenkin coefficients”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 5, 32–44 ; Russian Math. (Iz. VUZ), 61:5 (2017), 26–37 |
28. |
S. S. Volosivets, “Series in Multiplicative Systems in Lorentz Spaces”, Mat. Zametki, 102:3 (2017), 339–354 ; Math. Notes, 102:3 (2017), 310–324 |
1
|
29. |
S. S. Volosivets, “Approximation of functions and their conjugates in variable Lebesgue spaces”, Mat. Sb., 208:1 (2017), 48–64 ; Sb. Math., 208:1 (2017), 44–59 |
21
|
|
2016 |
30. |
S. S. Volosivets, “Approximation of Polynomials in the Haar System in Weighted Symmetric Spaces”, Mat. Zametki, 99:5 (2016), 649–657 ; Math. Notes, 99:5 (2016), 643–651 |
5
|
31. |
S. S. Volosivets, T. V. Likhacheva, “Sidon-type inequalities and strong approximation by Fourier sums in multiplicative systems”, Sibirsk. Mat. Zh., 57:3 (2016), 617–631 ; Siberian Math. J., 57:3 (2016), 486–497 |
4
|
|
2015 |
32. |
S. S. Volosivets, T. V. Likhacheva, “Several questions of approximation by polynomials with respect to multiplicative systems in weighted $L^p$ spaces”, Izv. Saratov Univ. Math. Mech. Inform., 15:3 (2015), 251–258 |
3
|
33. |
S. S. Volosivets, “Hardy–Goldberg operator and its conjugate one in Hardy spaces and $BMO(\mathbb T)$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 2, 18–29 ; Russian Math. (Iz. VUZ), 59:2 (2015), 14–24 |
1
|
34. |
S. S. Volosivets, B. I. Golubov, “Uniform Convergence and Integrability of Multiplicative Fourier Transforms”, Mat. Zametki, 98:1 (2015), 44–60 ; Math. Notes, 98:1 (2015), 53–67 |
1
|
35. |
S. S. Volosivets, “Approximation by polynomials with respect to multiplicative systems in weighted $L^p$-spaces”, Sibirsk. Mat. Zh., 56:1 (2015), 82–93 ; Siberian Math. J., 56:1 (2015), 68–77 |
4
|
|
2014 |
36. |
S. S. Volosivets, “Modified Bessel ${\mathbf P}$-integrals and $\mathbf P$-derivatives and their properties”, Izv. RAN. Ser. Mat., 78:5 (2014), 27–52 ; Izv. Math., 78:5 (2014), 877–901 |
37. |
S. S. Volosivets, “Embedding Theorems for $\mathbf{P}$-nary Hardy and $VMO$ Spaces”, Izv. Saratov Univ. Math. Mech. Inform., 14:4(2) (2014), 518–525 |
38. |
S. S. Volosivets, R. N. Fadeev, “Weighted integrability of sums of series with respect to multiplicative systems”, Izv. Saratov Univ. Math. Mech. Inform., 14:2 (2014), 129–136 |
|
2013 |
39. |
S. S. Volosivets, R. N. Fadeev, “Weighted integrability of double series with respect to multiplicative systems”, Fundam. Prikl. Mat., 18:5 (2013), 69–87 ; J. Math. Sci., 209:1 (2015), 51–65 |
40. |
S. S. Volosivets, “Identities of Titchmarsh Type for Generalized Hardy and Hardy–Littlewood Operators”, Izv. Saratov Univ. Math. Mech. Inform., 13:1(2) (2013), 28–33 |
1
|
41. |
S. S. Volosivets, “Hausdorff Operators on $p$-Adic Linear Spaces and Their Properties in Hardy, $BMO$, and Hölder Spaces”, Mat. Zametki, 93:3 (2013), 357–367 ; Math. Notes, 93:3 (2013), 382–391 |
34
|
42. |
S. S. Volosivets, B. I. Golubov, “Fourier transforms in generalized Lipschitz classes”, Trudy Mat. Inst. Steklova, 280 (2013), 126–137 ; Proc. Steklov Inst. Math., 280 (2013), 120–131 |
3
|
|
2012 |
43. |
S. S. Volosivets, “The weighted $L^1$-integrability of functions and the Parseval equality with respect to multiplicative systems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 8, 15–26 ; Russian Math. (Iz. VUZ), 56:8 (2012), 11–21 |
44. |
S. S. Volosivets, “The modified $\mathbf P$-integral and $\mathbf P$-derivative and their applications”, Mat. Sb., 203:5 (2012), 3–32 ; Sb. Math., 203:5 (2012), 613–644 |
6
|
|
2011 |
45. |
S. S. Volosivets, “Modified Hardy and Hardy–Littlewood operators and their behaviour in various spaces”, Izv. RAN. Ser. Mat., 75:1 (2011), 29–52 ; Izv. Math., 75:1 (2011), 29–51 |
9
|
46. |
S. S. Volosivets, “On weighted analogs of Wiener's and Levy's theorems for Fourier–Vilenkin series”, Izv. Saratov Univ. Math. Mech. Inform., 11:3(1) (2011), 3–7 |
47. |
S. S. Volosivets, “Generalization of the Multiplicative Fourier Transform and Its Properties”, Mat. Zametki, 89:3 (2011), 323–330 ; Math. Notes, 89:3 (2011), 311–318 |
3
|
|
2010 |
48. |
S. S. Volosivets, B. I. Golubov, “Weighted integrability of multiplicative Fourier transforms”, Trudy Mat. Inst. Steklova, 269 (2010), 71–81 ; Proc. Steklov Inst. Math., 269 (2010), 65–75 |
3
|
|
2009 |
49. |
S. S. Volosivets, “Absolute convergence of single and double Fourier series on multiplicative systems”, Izv. Saratov Univ. Math. Mech. Inform., 9:3 (2009), 7–14 |
50. |
S. S. Volosivets, “Applications of $\mathbf P$-adic generalized functions and approximations by a system of $\mathbf P$-adic translations of a function”, Sibirsk. Mat. Zh., 50:1 (2009), 3–18 ; Siberian Math. J., 50:1 (2009), 1–13 |
5
|
|
2008 |
51. |
S. S. Volosivets, “On convergence of Fourier–Vilenkin series in $L^p[0,1)$, $0<p\le1$”, Izv. Saratov Univ. Math. Mech. Inform., 8:3 (2008), 3–9 |
52. |
S. S. Volosivets, “Convergence of series of Fourier coefficients for multiplicative convolutions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 11, 27–39 ; Russian Math. (Iz. VUZ), 52:11 (2008), 23–34 |
2
|
53. |
S. S. Volosivets, B. I. Golubov, “Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 4–13 ; Russian Math. (Iz. VUZ), 52:5 (2008), 1–8 |
1
|
54. |
S. S. Volosivets, “Hardy and Bellman transformations of series with respect to multiplicative systems”, Mat. Sb., 199:8 (2008), 3–28 ; Sb. Math., 199:8 (2008), 1111–1137 |
2
|
|
2007 |
55. |
N. Yu. Agafonova, S. S. Volosivets, “Multipliers of Convergence in Norm of Series with Respect to Multiplicative Systems”, Mat. Zametki, 82:4 (2007), 483–494 ; Math. Notes, 82:4 (2007), 433–442 |
|
2006 |
56. |
S. S. Volosivets, “The modified multiplicative integral and derivative of arbitrary order on the semiaxis”, Izv. RAN. Ser. Mat., 70:2 (2006), 3–24 ; Izv. Math., 70:2 (2006), 211–231 |
7
|
57. |
S. S. Volosivets, “Refined theorems of approximation theory in the space of $p$-absolutely continuous functions”, Mat. Zametki, 80:5 (2006), 701–711 ; Math. Notes, 80:5 (2006), 663–672 |
7
|
58. |
S. S. Volosivets, “Convergence of fourier series with respect to multiplicative systems and the $p$-fluctuation continuity modulus”, Sibirsk. Mat. Zh., 47:2 (2006), 241–258 ; Siberian Math. J., 47:2 (2006), 193–208 |
8
|
|
2005 |
59. |
S. S. Volosivets, “A modified $\mathbf P$-adic integral and a modified $\mathbf P$-adic derivative for functions defined on a half-axis”, Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 6, 28–39 ; Russian Math. (Iz. VUZ), 49:6 (2005), 25–36 |
7
|
|
1998 |
60. |
S. S. Volosivets, “Specifications of direct and inverse approximation theorems for $p$-absolutely continuous functions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 5, 55–56 |
|
1997 |
61. |
S. S. Volosivets, “Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber–Schauder system”, Mat. Zametki, 62:3 (1997), 363–371 ; Math. Notes, 62:3 (1997), 306–313 |
1
|
|
1996 |
62. |
S. S. Volosivets, “Polynomials of best approximation and relations between moduli of continuity in spaces of functions of bounded $p$-variation”, Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 9, 21–26 ; Russian Math. (Iz. VUZ), 40:9 (1996), 18–23 |
5
|
|
1995 |
63. |
S. S. Volosivets, “Asymptotic properties of one compact set of smooth functions in the space of functions of bounded $p$-variation”, Mat. Zametki, 57:2 (1995), 214–227 ; Math. Notes, 57:2 (1995), 148–157 |
5
|
|
1993 |
64. |
S. S. Volosivets, “Approximation of functions of bounded $p$-variation by means of polynomials of the Haar and Walsh systems”, Mat. Zametki, 53:6 (1993), 11–21 ; Math. Notes, 53:6 (1993), 569–575 |
6
|
|
1992 |
65. |
S. S. Volosivets, “On the $\varepsilon$-entropy of some sets of functions of bounded $p$-variation”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 2, 83–85 ; Russian Math. (Iz. VUZ), 36:2 (1992), 83–85 |
1
|
66. |
S. S. Volosivets, “On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 5, 81–84 |
1
|
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|