Afanasev V. I., Sluchainye bluzhdaniya i vetvyaschiesya protsessy, Lektsionnye kursy NOTs, 6, MIAN, 2007
Afanasev V. I., “Zakon arksinusa dlya vetvyaschikhsya protsessov v sluchainoi srede i protsessov Galtona–Vatsona”, Teoriya veroyatnostei i ee primeneniya, 51:3 (2006), 449–464
Afanasev V. I., “Predelnye teoremy dlya promezhutochno dokriticheskogo i strogo dokriticheskogo vetvyaschikhsya protsessov v sluchainoi srede”, Diskretnaya matematika, 13:1 (2001), 132–157
V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673
V. I. Afanasyev, C. Boinghoff, G. Kersting, V. A. Vatutin,, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732
V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Functional limit theorems for strongly subcritical branching processes in random environment”, Stochastic Process. Appl., 115:10 (2005), 1658–1676
V. I. Afanasyev, Ch. Böinghoff, G. Kersting, and V. A. Vatutin, “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. H. Poincaré Probab. Statist., 50:2 (2014), 602–627 , arXiv: 1108.2127
V. I. Afanasyev, “Limit theorems for a moderately subcritical branching process in a random environment”, Discrete Math. Appl., 8:1 (1998), 35–52
9.
V. I. Afanasyev, “A new limit theorem for a critical branching process in a random environment”, Discrete Math. Appl., 7:5 (1997), 497–513
10.
V. I. Afanasyev, “About time of reaching a high level by a random walk in a random environment”, Theory Probab. Appl., 57:4 (2013), 547–567
11.
V. I. Afanasyev, “Functional limit theorems for the decomposable branching process with two types of particles”, Discrete Math. Appl., 26:2 (2016), 71–88
12.
V. I. Afanasyev, “On a maximum of a transient random walk in random environment”, Theory Probab. Appl., 35:2 (1990), 205–215
13.
V. I. Afanasyev, “On a decomposable branching process with two types of particles”, Proc. Steklov Inst. Math., 294 (2016), 1–12
14.
V. I. Afanasyev, “Limit theorems for an intermediately subcritical and a strongly subcritical branching process in a random environment”, Discrete Math. Appl., 11:2 (2001), 105–131
15.
V. I. Afanasyev, “On the time of reaching a fixed level by a critical branching process in a random environment”, Discrete Math. Appl., 9:6 (1999), 627–643
16.
V. I. Afanasyev, “Invariance Principle for the Critical Branching Process in a Random Environment Attaining a High Level”, Theory Probab. Appl., 54:1 (2010), 1–13
17.
V. I. Afanasyev, “Arcsine law for branching processes in a random environment and Galton–Watson processes”, Theory Probab. Appl., 51:3 (2007), 401–414
18.
V. I. Afanas'ev, “A conditional random walk with a negative drift”, Theory Probab. Appl., 24:1 (1979), 192–199
19.
V. I. Afanasyev, “Two-boundary problem for a random walk in a random environment”, Theory Probab. Appl., 63:3 (2019), 339–350
20.
V. I. Afanasyev, “On the time of attaining a high level by a transient random walk in a random environment”, Theory Probab. Appl., 61:2 (2017), 178–207
21.
V. I. Afanasyev, “Conditional limit theorem for maximum of random walk in a random environment”, Theory Probab. Appl., 58:4 (2014), 525–545
22.
V. I. Afanasyev, “A functional limit theorem for a critical branching process in a random environment”, Discrete Math. Appl., 11:6 (2001), 587–606
23.
V. I. Afanasev, “Funktsionalnye predelnye teoremy dlya razlozhimykh vetvyaschikhsya protsessov s dvumya tipami chastits”, Tezisy dokladov, predstavlennykh na Chetvertoi mezhdunarodnoi konferentsii po stokhasticheskim metodam, Teoriya veroyatnostei i ee primenenie, 65:1 (2020), 151-201
V. I. Afanasyev, “Functional limit theorem for the local time of stopped random walk”, Discrete Math. Appl., 30:3 (2020), 147–157
31.
V. I. Afanasyev, “Functional limit theorem for a stopped random walk attaining a high level”, Discrete Math. Appl., 27:5 (2017), 269–276
32.
V. I. Afanasyev, “High Level Subcritical Branching Processes in a Random Environment”, Proc. Steklov Inst. Math., 282 (2013), 4–14
33.
V. I. Afanasyev, “On the Local Time of a Stopped Random Walk Attaining a High Level”, Proc. Steklov Inst. Math., 316 (2022), 5–25
34.
V. I. Afanasyev, “Functional limit theorems for high-level subcritical branching processes in random environment”, Discrete Math. Appl., 24:5 (2014), 257–272
35.
V. I. Afanasyev, “Invariance principle for the critical Galton–Watson process attaining a high level”, Theory Probab. Appl., 55:4 (2011), 559–574
36.
V. I. Afanasyev, “Galton–Watson processes attaining a high level”, Theory Probab. Appl., 52:3 (2008), 509–515
37.
V. I. Afanasyev, “On the ratio between the maximal and total numbers of individuals in a critical branching process in a random environment”, Theory Probab. Appl., 48:3 (2004), 384–399
38.
V. I. Afanas'ev, “On functions of a random walk up to the hitting the negative half-axis”, Theory Probab. Appl., 31:4 (1986), 683–687
39.
V. I. Afanasev, “Vetvyaschiisya protsess v sluchainoi srede, nachinayuschiisya s bolshogo chisla chastits”, Tezisy dokladov, predstavlennykh na Devyatoi Mezhdunarodnoi konferentsii po stokhasticheskim metodam, Teoriya veroyatnostei i ee primeneniya, 69:4 (2024), 800-835
V. I. Afanasev, “Slabo nadkriticheskii vetvyaschiisya protsess v sluchainoi srede pri uslovii otdalennogo vyrozhdeniya”, Tezisy dokladov, predstavlennykh na Vosmoi Mezhdunarodnoi konferentsii po stokhasticheskim metodam, Teoriya veroyatnostei i ee primeneniya, 68:4 (2023), 834–877
V. I. Afanasyev, “Weakly supercritical branching process in unfavourable environment”, Discrete Math. Appl., 34:1 (2024), 1–13
42.
V. I. Afanasyev, “O lokalnykh vremenakh uslovnykh sluchainykh bluzhdanii”, Tezisy dokladov, predstavlennykh na Sedmoi Mezhdunarodnoi konferentsii po stokhasticheskim metodam. 1, Teoriya veroyatnostei i ee primeneniya, 67:4 (2022), 819-836
V. I. Afanasyev, “Limit theorems for a strongly supercritical branching process with immigration in random environment”, Stoch. Qual. Control, 36:2 (2021), 129-143
V. I. Afanasyev, “On the Times of Attaining High Levels by a Random Walk in a Random Environment”, Theory Probab. Appl., 65:3 (2020), 359–374
45.
V. I. Afanasyev, “Two-sided problem for the random walk with bounded maximal increment”, Discrete Math. Appl., 31:2 (2021), 79–89
46.
V. I. Afanasyev, “On the time of attaining a maximum by a critical branching process in a random environment and by a stopped random walk”, Discrete Math. Appl., 10:3 (2000), 243–264
47.
V. I. Afanasyev, “Weakly supercritical branching process in random environment dying at a distant moment”, Theory Probab. Appl., 68:4 (2024), 537–558
48.
V. I. Afanasev, “Granichnye zadachi dlya sluchainogo bluzhdaniya v sluchainoi srede”, Tezisy dokladov, predstavlennykh na Tretei Mezhdunarodnoi konferentsii po stokhasticheskim metodam, Teoriya veroyatnostei i ee primenenie, 64:1 (2019), 151-204
V. I. Afanasyev, “New invariance principles for critical branching process in random environment”, Advances in data analysis, Stat. Ind. Technol., Birkhäuser Boston, Boston, MA, 2010, 105–115
V. I. Afanasyev, “A functional limit theorem for the logarithm of a moderately subcritical branching process in a random environment”, Discrete Math. Appl., 8:4 (1998), 421–438
51.
V. I. Afanasyev, “A conditional limit theorem for additive functionals of a random walk”, Theory Probab. Appl., 35:2 (1990), 330–336
52.
V. I. Afanasyev, “Local time of a random walk up to the first passage to the semiaxis”, Math. Notes, 48:6 (1990), 1173–1177
53.
V. I. Afanasyev, Mat. Sb. (to appear)
54.
V. I. Afanasyev, “A branching process in a random environment, starting with a large number of particles”, Theory Probab. Appl., 70:1 (2025), 1–23
55.
V. I. Afanasyev, “Distributions of lengths of excursions of a Brownian bridge”, Computer Data Analysis and Modeling: Stochastics and Data Science, Proc. of the XIV Intern. Conf. (Minsk, Sept. 24-27, 2025), ISBN 978-985-881-830-2, eds. Yu. Kharin et al., BSU, Minsk, 2025, 13-15
56.
V. I. Afanasev, “Predelnye teoremy dlya funktsionalov ot vetvyaschegosya protsessa v sluchainoi srede, nachinayuschegosya s bolshogo chisla chastits”, Tezisy dokladov, predstavlennykh na Desyatoi Mezhdunarodnoi konferentsii po stokhasticheskim metodam, Teoriya veroyatnostei i ee primeneniya, 70:3 (2025), 552-607
57.
V. I. Afanasyev, “Strongly supercritical branching process in a random environment dying at a distant moment”, Diskr. Mat., 36:1 (2024), 3–14
58.
V. I. Afanasyev, “Limit theorem on the convergence to the local time of a Brownian bridge”, Math. Notes, 116:5 (2024), 875–891
59.
V. I. Afanasev, “Predelnaya teorema o skhodimosti k lokalnomu vremeni brounovskogo mosta”, XIV Belorusskaya matematicheskaya konferentsiya, posvyaschennaya 65-letiyu instituta matematiki NAN Belarusi, Materialy Mezhdunarodnoi nauchnoi konferentsii. V trekh chastyakh. Chast 2 (Minsk, Belarus, 28 oktyabrya–1 noyabrya 2024 g.), Sostavitel Busel T. S., Izdatelskii dom “Belaruskaya navuka”, g. Minsk, 2024, 120-121https://www.mathnet.ru/ConfLogos/2386/2386-Abstracts.pdf
60.
V. I. Afanasyev, “Local invariance principle for a random walk with zero drift”, J. Math. Sci. (N.Y.), 266 (2023), 850–868
61.
V. I. Afanasev, “Uslovnye predelnye teoremy dlya sluchainykh bluzhdanii i ikh lokalnykh vremen”, Vtoraya konferentsiya Matematicheskikh tsentrov Rossii: sbornik tezisov (7-11 noyabrya 2022 g.), izdatelstvo Moskovskogo universiteta, M., 2022, 24–26
62.
V. I. Afanasyev, “Local time of a stopped random walk and a Galton-Watson branching process”, The 5th International Workshop on Branching Processes and their Applications. Book of Abstracts (Badajoz, Spain, April 6-22, 2021), eds. Miguel Gonzalez and Ines M. del Puerto, University of Extremadura, Badajoz, Spain, 2021, 30
63.
V. I. Afanasyev, “A conditional functional limit theorem for a decomposable branching process”, Operator Theory and Harmonic Analysis. OTHA 2020, Part II – Probability-Analytical Models, Methods and Applications, Springer Proc. Math. Statist., 358, Springer, 2021, 1–18
64.
V. I. Afanasyev, “A critical branching process with immigration in random environment”, Proceedings of the 5th International Conference on Stochastic Methods (Russia, Moscow, November 23-27, 2020), Peoples Friendship University of Russia, Moscow, 2020, 11-15
65.
V. I. Afanasyev, Review of Applied and Industrial Mathematics, 24:4 (2017), 312–313
66.
V. I. Afanasev, “About time of reaching a high level by a random walk in a random environment”, Modern problems in theoretical and applied probability (Sovremennye problemy teoreticheskoi i prikladnoi veroyatnosti): sbornik materialov VI Mezhdunarodnoi konferentsii (Novosibirsk, 22–25 avgusta 2016 g.), eds. Tarasenko A.S., Redaktsionno-izdatelskii tsentr NGU, 630090, Novosibirsk-90, ul. Pirogova, 2, 2016, 11–12
67.
V. I. Afanasyev, Review of Applied and Industrial Mathematics, 23:4 (2016), 326–327
68.
V. I. Afanasyev, “On subcritical branching processes in random environment”, III Workshop on Branching Processes and their Applications. Book of Abstracts (Badajoz, Spain, April 7-10, 2015), eds. Miguel Gonzalez, University of Extremadura, Badajoz, Spain, 2015, 38–38
69.
V. I. Afanasyev, “On the time of attaining a high level by a transient random walk in random environment”, XVI-th International Summer Conference on Probability and Statistics (ISCPS-2014). Abstracts (Pomorie, Bulgaria, 21–28 June 2014), eds. N. M. Yanev, Bulgarian Academy of Sciences, Sofia, 2014, 4–5
70.
V. I. Afanasyev, “High level subcritical branching processes in a random environment”, XXXII International Seminar on Stability Problems for Stochastic Models. Book of Abstracts (Trondheim, Norway, 16–21 June 2014), eds. V. Yu. Korolev and S.Ya. Shorgin, Institute of informatics problems, RAS, Moscow, 2014, 5–6
71.
V. I. Afanasyev, Review of Applied and Industrial Mathematics, 21:4 (2014), 327–328
72.
V. I. Afanasyev, “Branching processes with immigration in random environment”, Abstracts of the 29-th European Meeting of Statisticians (Budapest, Hungary, 20–25 July 2013), eds. Laszlo Markus and Vilmos Prokaj, Haxel, 2013, 25–26
73.
V. I. Afanasyev, “Random walk in random environment conditioned to be positive: limit theorem for maximum”, 7-th International Workshop on Simulation. Book of abstracts (Rimini, Italy, 21–25 May 2013), Quaderni di Dipartimento. Serie Ricerche, 3, eds. Mariagiulia Matteucci, University of Bologna, Bologna, Italy, 2013, 25-26
74.
V. I. Afanasev, “Vetvyaschiisya protsess v sluchainoi srede, nachinayuschiisya s bolshogo chisla chastits”, Dvenadtsatyi Vserossiiskii simpozium po prikladnoi i promyshlennoi matematike (Sochi-Adler, 1–8 oktyabrya 2011 g.), Obozrenie prikl. i promyshl. matem., 18, no. 3, 2011, 410–410
75.
V. I. Afanasev, “O globalnykh kharakteristikakh kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Devyatyi Vserossiiskii simpozium po prikladnoi i promyshlennoi matematike (Kislovodsk, 01–08 maya 2008 g.), Obozrenie prikl. i promyshl. matem., 15, no. 4, 2008, 692–693
76.
V. I. Afanasyev, Random walks and branching processes, Lekts. Kursy NOC, 6, Steklov Math. Inst., RAS, Moscow, 2007 , 188 pp.
77.
V. I. Afanasev, A. A. Bobodzhanov, V. G. Krupin, Kurs vysshei matematiki. Teoriya veroyatnostei. Lektsii i praktikum, eds. I. M. Petrushko, Lan, Sankt-Peterburg, Moskva, Krasnodar, 2007 , 352 pp.
78.
V. I. Afanasev, “Ob usloviyakh sovpadeniya mnozhestv nevyrozhdeniya i estestvennogo rosta dlya vetvyaschikhsya protsessov v izmenyayuscheisya i sluchainoi sredakh”, Vestnik MEI, 2003, no. 6, 94–105
79.
V. I. Afanasev, O. V. Zimina, A. I. Kirillov, I. M. Petrushko, T. A. Salnikova, Vysshaya matematika. Spetsialnye razdely, eds. A. I. Kirillov, FIZMATLIT, Moskva, 2001 , 400 pp.
80.
V. I. Afanasyev, “On the probability of the first passage into a fixed state for a random walk on a half-line”, Diskr. Mat., 3:1 (1991), 61–67
81.
V. I. Afanasyev, “Mean value of a function of a random walk up to the time of the first passage to the semiaxis”, Math. Notes, 42:6 (1987), 992–996
82.
V. I. Afanasyev, V. G. Mikhailov, E. E. Dyakonova, “Andrei Mikhailovich Zubkov: On the occasion of his 75th birthday”, Proc. Steklov Inst. Math., 316 (2022), 1–2
83.
V. I. Afanasyev, V. G. Mikhailov, E. E. Dyakonova, “Vladimir Alekseevich Vatutin: On the occasion of his 70th birthday”, Proc. Steklov Inst. Math., 316 (2022), 3–4
84.
Vetvyaschiesya protsessy i smezhnye voprosy, Sbornik statei. K 75-letiyu so dnya rozhdeniya Andreya Mikhailovicha Zubkova i 70-letiyu so dnya rozhdeniya Vladimira Alekseevicha Vatutina, Trudy MIAN, 316, ed. V. I. Afanasev, V. G. Mikhailov, E. E. Dyakonova, MIAN, M., 2022 , 390 pp.
Functional limit theorems for a decomposable branching process V. I. Afanasyev Conference «Contemporary Mathematics and its applications» dedicated to the results of research supported by the Russian Science Foundation grant 14-50-00005 November 19, 2018 15:30
Случайные блуждания и ветвящиеся процессы V. I. Afanasyev Principle Seminar of the Department of Probability Theory, Moscow State University November 28, 2007 16:45
Branching Processes and Related Topics, Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin, Trudy Mat. Inst. Steklova, 316, ed. V. I. Afanasyev, V. G. Mikhailov, E. E. Dyakonova, 2022, 390 с. http://mi.mathnet.ru/book1875
V. I. Afanas'ev, Random walks and branching processes, Lekts. Kursy NOC, 6, 2007, 188 с. http://mi.mathnet.ru/book648