Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Научная сессия МИАН, посвященная подведению итогов 2025 года
18 ноября 2025 г. 15:00–15:15, г. Москва, МИАН, ауд. 104 + online
 


Многомерные гамильтоновы системы: неинтегрируемость и диффузия

В. В. Козлов
Дополнительные материалы:
Adobe PDF 265.5 Kb

В. В. Козлов
Фотогалерея



Аннотация: Рассматриваются гамильтоновы системы дифференциальных уравнений, мало отличающиеся от вполне интегрируемых. Если такая система интегрируемая, то переменные действие не могут сильно изменяться и поэтому никакой диффузии нет. Таким образом, неинтегрируемое поведение гамильтоновой системы и наличие диффузии медленных переменных тесно связаны друг с другом. Этот круг вопросов обсуждается для одного класса гамильтоновых систем, на примере которых рассматривается новый механизм диффузии, отличный от “стандартного” механизма переходных цепочек. Он связан с разрушением большого числа инвариантных торов невозмущённой задачи с почти резонансным набором частот. Формальная сторона этого явления опирается на условия неограниченности интегралов условно периодических функций времени с нулевым средним значением.

Дополнительные материалы: Kozlov.pdf (265.5 Kb)

Статьи по теме:
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025