Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар Добрушинской лаборатории Высшей школы современной математики МФТИ
15 сентября 2015 г. 16:00, комн. 307 ИППИ РАН (Большой Каретный пер., 19), Москва
 


Метод инвариантов в теории стохастических дифференциальных уравнений и в теории программного управления с вероятностью единица

Е. В. Карачанская

Тихоокеанский государственный университет, г. Хабаровск

Количество просмотров:
Эта страница:181

Аннотация: Рассматриваются три типа инвариантов, связанные с теорией стохастических дифференциальных уравнений: геометрического типа, интегральные и динамические. Инварианты первого типа представлены фиксированной длиной случайной цепи; радиусом сферы, на которой происходит вращательная диффузия. Использование этих инвариантов дает возможность моделирования стохастических движений, перемещений за конечное время на конечное расстояние, а также динамики размеров глобулы. Рассматриваемые инварианты второго типа - это интегралы от ядер интегральных инвариантов по всему пространству, уравнения для которых получены и приводятся; затем эти ядра используются для построения обобщенной формулы Ито-Вентцеля – аналога формулы Ито-Вентцеля для функции и процесса, соответствующих обобщенным уравнениям Ито. Интегральные инварианты и обобщенная формула Ито-Вентцеля применяются для получения стохастических первых интегралов обобщенных уравнений Ито. В дальнейшем первые интегралы, которые трактуются как динамические инварианты, применяются в построении программных управлений с вероятностью 1 для динамических стохастических систем, подверженных винеровским и пуассоновским возмущениям на неслучайных многообразиях. При этом заданная поверхность связывается с первым интегралом некоторой системы обобщенных СДУ Ито, которая строится на их основе.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024