48 citations to https://www.mathnet.ru/rus/rm1687
  1. Honigs K., “Derived Equivalent Surfaces and Abelian Varieties, and Their Zeta Functions”, 143, no. 10, 2015, 4161–4166  crossref  mathscinet  zmath  isi
  2. Halpern-Leistner D., “the Derived Category of a Git Quotient”, 28, no. 3, 2015, 871–912  mathscinet  zmath  isi
  3. M. Ballard, D. Favero, L. Katzarkov, “A category of kernels for equivariant factorizations, II: further implications”, J. Math. Pures Appl. (9), 102:4 (2014), 702–757  crossref  mathscinet  zmath  isi
  4. Daniel Halpern-Leistner, “The derived category of a GIT quotient”, J. Amer. Math. Soc., 28:3 (2014), 871  crossref
  5. Ch. Böhning, H.-Ch. G. von Bothmer, P. Sosna, “On the derived category of the classical Godeaux surface”, Adv. Math., 243 (2013), 203–231  crossref  mathscinet  zmath  isi  scopus
  6. M. Bernardara, M. Bolognesi, “Derived categories and rationality of conic bundles”, Compos. Math., 149:11 (2013), 1789–1817  crossref  mathscinet  zmath  isi  scopus
  7. A. Ananyevskiy, A. Auel, S. Garibaldi, K. Zainoulline, “Exceptional collections of line bundles on projective homogeneous varieties”, Adv. Math., 236 (2013), 111–130  crossref  mathscinet  zmath  isi
  8. A. Del Padrone, C. Pedrini, “Derived categories of coherent sheaves and motives of K3 surfaces”, Regulators, Contemp. Math., 571, eds. Gil J., DeJeu R., Lewis J., Naranjo J., Raskind W., Xarles X., Amer. Math. Soc., Providence, RI, 2012, 219–232  crossref  mathscinet  zmath  isi
  9. M. Bernardara, M. Bolognesi, “Categorical Representability and Intermediate Jacobians of Fano Threefolds”, Derived categories in algebraic geometry - Tokyo 2011, EMS Ser. Congr. Rep., ed. Kawamata Y., European Math. Soc., 2012, 1–25  mathscinet  zmath  isi
  10. F. Ivorra, J. Sebag, “Géométrie algébrique par morceaux, $K$-équivalence et motifs”, Enseign. Math. (2), 58:3-4 (2012), 375–403  crossref  mathscinet  zmath
Предыдущая
1
2
3
4
5
Следующая