124 citations to https://www.mathnet.ru/rus/sm2692
-
Sarychev A., “Lie- and Chronologico-Algebraic Tools for Studying Stability of Time-Varying Systems”, Syst. Control Lett., 43:1 (2001), 59–76
-
Hirschorn R., Lewis A., “Geometric First-Order Controllability Conditions for Affine Connection Control Systems”, Proceedings of the 40th IEEE Conference on Decision and Control, Vols 1-5, IEEE Conference on Decision and Control, IEEE, 2001, 4216–4221
-
Sklyar G., Ignatovich S., “Moment Approach to Nonlinear Time Optimality”, SIAM J. Control Optim., 38:6 (2000), 1707–1728
-
M. Kawski, 2, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), 2000, 1661
-
F. Bullo, A.D. Lewis, 2, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), 2000, 1260
-
Komleva T., “Sufficient Condition of Completion of a Pursuit in a Nonlinear Differential Game”, Cybern. Syst. Anal., 35:6 (1999), 960–964
-
M. Kawski, 3, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), 1999, 2920
-
H.J. Sussmann, 1, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), 1998, 1
-
Andrei V. Sarychev, “First- and Second-Order Sufficient Optimality Conditions for Bang-Bang Controls”, SIAM J Control Optim, 35:1 (1997), 315
-
С. А. Вахрамеев, “Теорема существования для нелинейной задачи быстродействия в классе релейных управлений с конечным числом переключений”, УМН, 51:2(308) (1996), 151–152
; S. A. Vakhrameev, “An existence theorem for a non-linear time-optimal problem in a class of bang-bang controls with finitely many switchings”, Russian Math. Surveys, 51:2 (1996), 353–354