|
|
|
Publications in Math-Net.Ru |
Citations |
|
2025 |
| 1. |
G. A. Agafonkin, N. N. Nefedov, I. A. Sheipak, “Operator model of the Benard problem and its spectral analysis”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 2, 23–29 ; Moscow University Mathematics Bulletin, 80:2 (2025), 106–112 |
|
2024 |
| 2. |
N. N. Nefedov, “Existence and asymptotic behavior of solutions of boundary value problems for Tiknohov-type reaction–diffusion systems in the case of stability exchange”, Mat. Zametki, 116:6 (2024), 947–955 ; Math. Notes, 116:6 (2024), 1332–1338 |
2
|
| 3. |
N. N. Nefedov, “Existence, Asymptotics, and Lyapunov Stability of Solutions of Periodic Parabolic Problems for Tikhonov-Type Reaction–Diffusion Systems”, Mat. Zametki, 115:2 (2024), 276–285 ; Math. Notes, 115:2 (2024), 232–239 |
2
|
| 4. |
N. N. Nefedov, A. O. Orlov, “Existence and stability of stationary solutions with boundary layers in a system of fast and slow reaction–diffusion–advection equations with KPZ nonlinearities”, TMF, 220:1 (2024), 137–153 ; Theoret. and Math. Phys., 220:1 (2024), 1178–1192 |
3
|
|
2023 |
| 5. |
N. N. Nefedov, A. O. Orlov, “On unstable contrast structures in one-dimensional reaction–diffusion–advection problems with discontinuous sources”, TMF, 215:2 (2023), 297–310 ; Theoret. and Math. Phys., 215:2 (2023), 716–728 |
5
|
| 6. |
A. S. Leonov, N. N. Nefedov, A. N. Sharov, A. G. Yagola, ““Fast” solution of the three-dimensional inverse problem of quasi-static elastography with the help of the small parameter method”, Zh. Vychisl. Mat. Mat. Fiz., 63:3 (2023), 449–464 ; Comput. Math. Math. Phys., 63:3 (2023), 425–440 |
1
|
|
2022 |
| 7. |
N. N. Nefedov, “Periodic Contrast Structures in the Reaction-Diffusion Problem with Fast Response and Weak Diffusion”, Mat. Zametki, 112:4 (2022), 601–612 ; Math. Notes, 112:4 (2022), 588–597 |
5
|
| 8. |
V.T. Volkov, N. N. Nefedov, “Boundary control of fronts in a Burgers-type equation with modular adhesion and periodic amplification”, TMF, 212:2 (2022), 179–189 ; Theoret. and Math. Phys., 212:2 (2022), 1044–1052 |
| 9. |
N. N. Nefedov, N. N. Deryugina, “Existence and stability of a stable stationary solution with a boundary layer for a system of reaction–diffusion equations with Neumann boundary conditions”, TMF, 212:1 (2022), 83–94 ; Theoret. and Math. Phys., 212:1 (2022), 962–971 |
4
|
| 10. |
V.T. Volkov, N. N. Nefedov, “Asymptotic solution of the boundary control problem for a Burgers-type equation with modular advection and linear gain”, Zh. Vychisl. Mat. Mat. Fiz., 62:11 (2022), 1851–1860 ; Comput. Math. Math. Phys., 62:11 (2022), 1849–1858 |
5
|
| 11. |
A. S. Leonov, N. N. Nefedov, A. N. Sharov, A. G. Yagola, “Solution of the two-dimensional inverse problem of quasistatic elastography with the help of the small parameter method”, Zh. Vychisl. Mat. Mat. Fiz., 62:5 (2022), 854–860 ; Comput. Math. Math. Phys., 62:5 (2022), 827–833 |
1
|
|
2021 |
| 12. |
N. N. Nefedov, E. I. Nikulin, “On Unstable Solutions with a Nonmonotone Boundary Layer in a Two-Dimensional Reaction-Diffusion Problem”, Mat. Zametki, 110:6 (2021), 899–910 ; Math. Notes, 110:6 (2021), 922–931 |
8
|
| 13. |
N. T. Levashova, N. N. Nefedov, O. A. Nikolaeva, “Solution with an inner transition layer of a two-dimensional boundary value reaction–diffusion–advection problem with discontinuous reaction and advection terms”, TMF, 207:2 (2021), 293–309 ; Theoret. and Math. Phys., 207:2 (2021), 655–669 |
9
|
| 14. |
N. N. Nefedov, “Development of methods of asymptotic analysis of transition layers in reaction–diffusion–advection equations: theory and applications”, Zh. Vychisl. Mat. Mat. Fiz., 61:12 (2021), 2074–2094 ; Comput. Math. Math. Phys., 61:12 (2021), 2068–2087 |
64
|
|
2020 |
| 15. |
N. N. Nefedov, O. V. Rudenko, “On the motion, amplification, and blow-up of fronts in Burgers-type equations with quadratic and modular nonlinearity”, Dokl. RAN. Math. Inf. Proc. Upr., 493 (2020), 26–31 ; Dokl. Math., 102:1 (2020), 283–287 |
11
|
| 16. |
N. N. Nefedov, E. I. Nikulin, A. O. Orlov, “On a periodic inner layer in the reaction–diffusion problem with a modular cubic source”, Zh. Vychisl. Mat. Mat. Fiz., 60:9 (2020), 1513–1532 ; Comput. Math. Math. Phys., 60:9 (2020), 1461–1479 |
20
|
| 17. |
V.T. Volkov, N. N. Nefedov, “Asymptotic solution of coefficient inverse problems for Burgers-type equations”, Zh. Vychisl. Mat. Mat. Fiz., 60:6 (2020), 975–984 ; Comput. Math. Math. Phys., 60:6 (2020), 950–959 |
11
|
|
2019 |
| 18. |
N. N. Nefedov, E. I. Nikulin, “Existence and Asymptotic Stability of Periodic Two-Dimensional Contrast Structures in the Problem with Weak Linear Advection”, Mat. Zametki, 106:5 (2019), 708–722 ; Math. Notes, 106:5 (2019), 771–783 |
16
|
| 19. |
N. T. Levashova, N. N. Nefedov, A. O. Orlov, “Asymptotic stability of a stationary solution of a multidimensional reaction-diffusion equation with a discontinuous source”, Zh. Vychisl. Mat. Mat. Fiz., 59:4 (2019), 611–620 ; Comput. Math. Math. Phys., 59:4 (2019), 573–582 |
25
|
| 20. |
V.T. Volkov, D. V. Lukyanenko, N. N. Nefedov, “Analytical-numerical approach to describing time-periodic motion of fronts in singularly perturbed reaction–advection–diffusion models”, Zh. Vychisl. Mat. Mat. Fiz., 59:1 (2019), 50–62 ; Comput. Math. Math. Phys., 59:1 (2019), 46–58 |
15
|
|
2018 |
| 21. |
N. T. Levashova, N. N. Nefedov, A. V. Yagremtsev, “Existence of a solution in the form of a moving front of a reaction-diffusion-advection problem
in the case of balanced advection”, Izv. RAN. Ser. Mat., 82:5 (2018), 131–152 ; Izv. Math., 82:5 (2018), 984–1005 |
3
|
| 22. |
N. N. Nefedov, E. I. Nikulin, “Existence and stability of the periodic solution with an interior transitional layer in the problem with a weak linear advection”, Model. Anal. Inform. Sist., 25:1 (2018), 125–132 |
6
|
| 23. |
E. A. Antipov, N. T. Levashova, N. N. Nefedov, “Asymptotic approximation of the solution of the reaction-diffusion-advection equation with a nonlinear advective term”, Model. Anal. Inform. Sist., 25:1 (2018), 18–32 |
5
|
| 24. |
V. F. Butuzov, N. N. Nefedov, L. Recke, K. R. Schneider, “Existence, asymptotics, stability and region of attraction of a periodic boundary layer solution in case of a double root of the degenerate equation”, Comput. Math. Math. Phys., 58:12 (2018), 1989–2001 |
3
|
|
2017 |
| 25. |
D. V. Luk'yanenko, V. T. Volkov, N. N. Nefedov, “Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction-diffusion-advection equation”, Model. Anal. Inform. Sist., 24:3 (2017), 322–338 |
10
|
| 26. |
E. A. Antipov, V. T. Volkov, N. T. Levashova, N. N. Nefedov, “Moving front solution of the reaction-diffusion problem”, Model. Anal. Inform. Sist., 24:3 (2017), 259–279 |
12
|
| 27. |
M. A. Davydova, N. N. Nefedov, “Existence and stability of the solutions with internal layers in multidimensional problems of the reaction-diffusion-advection type with balanced nonlinearity”, Model. Anal. Inform. Sist., 24:1 (2017), 31–38 |
1
|
| 28. |
N. T. Levashova, N. N. Nefedov, A. O. Orlov, “Time-independent reaction-diffusion equation with a discontinuous reactive term”, Zh. Vychisl. Mat. Mat. Fiz., 57:5 (2017), 854–866 ; Comput. Math. Math. Phys., 57:5 (2017), 854–866 |
36
|
|
2016 |
| 29. |
N. N. Nefedov, E. I. Nikulin, “Existence and stability of periodic solutions for reaction-diffusion equations in the two-dimensional case”, Model. Anal. Inform. Sist., 23:3 (2016), 342–348 |
7
|
| 30. |
D. V. Lukyanenko, V. T. Volkov, N. N. Nefedov, L. Recke, K. Schneider, “Analytic-numerical approach to solving singularly perturbed parabolic equations with the use of dynamic adapted meshes”, Model. Anal. Inform. Sist., 23:3 (2016), 334–341 |
11
|
| 31. |
V. F. Butuzov, N. N. Nefedov, L. Recke, K. Schneider, “Asymptotics, stability and region of attraction of a periodic solution to a singularly perturbed parabolic problem in case of a multiple root of the degenerate equation”, Model. Anal. Inform. Sist., 23:3 (2016), 248–258 ; Automatic Control and Computer Sciences, 51:7 (2017), 606–613 |
4
|
|
2015 |
| 32. |
N. N. Nefedov, Minkang Ni, “Internal layers in the one-dimensional reaction–diffusion equation with a discontinuous reactive term”, Zh. Vychisl. Mat. Mat. Fiz., 55:12 (2015), 2042–2048 ; Comput. Math. Math. Phys., 55:12 (2015), 2001–2007 |
35
|
|
2014 |
| 33. |
E. A. Antipov, N. T. Levashova, N. N. Nefedov, “Asymptotics of the front motion in the reaction-diffusion-advection problem”, Zh. Vychisl. Mat. Mat. Fiz., 54:10 (2014), 1594–1607 ; Comput. Math. Math. Phys., 54:10 (2014), 1536–1549 |
27
|
| 34. |
A. A. Bykov, N. N. Nefedov, A. S. Sharlo, “Contrast structures for a quasilinear Sobolev-type equation with unbalanced nonlinearity”, Zh. Vychisl. Mat. Mat. Fiz., 54:8 (2014), 1270–1280 ; Comput. Math. Math. Phys., 54:8 (2014), 1234–1243 |
2
|
|
2013 |
| 35. |
N. T. Levashova, N. N. Nefedov, A. V. Yagremtsev, “Contrast structures in the reaction-diffusion-advection equations in the case of balanced advection”, Zh. Vychisl. Mat. Mat. Fiz., 53:3 (2013), 365–376 ; Comput. Math. Math. Phys., 53:3 (2013), 273–283 |
11
|
|
2012 |
| 36. |
N. N. Nefedov, A. G. Nikitin, “The initial boundary value problem for a nonlocal singularly perturbed reaction–diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 52:6 (2012), 1042–1047 ; Comput. Math. Math. Phys., 52:6 (2012), 926–931 |
7
|
|
2011 |
| 37. |
N. N. Nefedov, A. G. Nikitin, “Boundary and internal layers in the reaction-diffusion problem with a nonlocal inhibitor”, Zh. Vychisl. Mat. Mat. Fiz., 51:6 (2011), 1081–1090 ; Comput. Math. Math. Phys., 51:6 (2011), 1011–1019 |
3
|
|
2010 |
| 38. |
V. T. Volkov, N. E. Grachev, A. V. Dmitriev, N. N. Nefedov, “Front formation and dynamics in the reaction-diffusion-advection model”, Mat. Model., 22:8 (2010), 109–118 ; Math. Models Comput. Simul., 3:2 (2011), 158–164 |
5
|
| 39. |
N. N. Nefyodov, “General scheme of asymptotic investigation of stable contrast structures”, Nelin. Dinam., 6:1 (2010), 181–186 |
7
|
| 40. |
A. B. Vasil'eva, V. F. Butuzov, N. N. Nefedov, “Singularly perturbed problems with boundary and internal layers”, Trudy Mat. Inst. Steklova, 268 (2010), 268–283 ; Proc. Steklov Inst. Math., 268 (2010), 258–273 |
86
|
| 41. |
N. E. Grachev, A. V. Dmitriev, D. S. Senin, V. T. Volkov, N. N. Nefedov, “Simulation of in-situ combustion front dynamics”, Num. Meth. Prog., 11:4 (2010), 306–312 |
1
|
| 42. |
Yu. V. Bozhevol'nov, N. N. Nefëdov, “Front motion in a parabolic reaction-diffusion problem”, Zh. Vychisl. Mat. Mat. Fiz., 50:2 (2010), 276–285 ; Comput. Math. Math. Phys., 50:2 (2010), 264–273 |
45
|
|
2008 |
| 43. |
N. N. Nefedov, K. R. Schneider, “On immediate-delayed exchange of stabilities and periodic forced canards”, Zh. Vychisl. Mat. Mat. Fiz., 48:1 (2008), 46–61 ; Comput. Math. Math. Phys., 48:1 (2008), 43–58 |
5
|
|
2007 |
| 44. |
V. T. Volkov, N. E. Grachëv, N. N. Nefedov, A. N. Nikolaev, “On the formation of sharp transition layers in two-dimensional reaction-diffusion models”, Zh. Vychisl. Mat. Mat. Fiz., 47:8 (2007), 1356–1364 ; Comput. Math. Math. Phys., 47:8 (2007), 1301–1309 |
14
|
| 45. |
N. N. Nefedov, A. G. Nikitin, “The Cauchy problem for a singularly perturbed integro-differential Fredholm equation”, Zh. Vychisl. Mat. Mat. Fiz., 47:4 (2007), 655–664 ; Comput. Math. Math. Phys., 47:4 (2007), 629–637 |
19
|
|
2006 |
| 46. |
N. N. Nefedov, A. G. Nikitin, “Method of differential inequalities for step-like contrast structures in singularly perturbed integro-differential equations in the spatially two-dimensional case”, Differ. Uravn., 42:5 (2006), 690–700 ; Differ. Equ., 42:5 (2006), 739–749 |
6
|
| 47. |
N. N. Nefedov, “Spike-type contrast structures in reaction-diffusion systems”, Fundam. Prikl. Mat., 12:5 (2006), 121–134 ; J. Math. Sci., 150:6 (2008), 2540–2549 |
2
|
| 48. |
N. N. Nefedov, A. G. Nikitin, T. A. Urazgil'dina, “The Cauchy problem for a singularly perturbed Volterra integro-differential equation”, Zh. Vychisl. Mat. Mat. Fiz., 46:5 (2006), 805–812 ; Comput. Math. Math. Phys., 46:5 (2006), 768–775 |
10
|
| 49. |
N. N. Nefedov, O. E. Omel'chenko, L. Recke, “Stationary internal layers in a reaction-advection-diffusion integro-differential system”, Zh. Vychisl. Mat. Mat. Fiz., 46:4 (2006), 624–646 ; Comput. Math. Math. Phys., 46:4 (2006), 594–615 |
1
|
| 50. |
V. T. Volkov, N. N. Nefedov, “Development of the asymptotic method of differential inequalities for investigation of periodic contrast structures in reaction-diffusion equations”, Zh. Vychisl. Mat. Mat. Fiz., 46:4 (2006), 615–623 ; Comput. Math. Math. Phys., 46:4 (2006), 585–593 |
41
|
|
2005 |
| 51. |
N. N. Nefedov, M. Radziunas, K. R. Schneider, A. B. Vasil'eva, “Change of the type of contrast structures in parabolic Neumann problems”, Zh. Vychisl. Mat. Mat. Fiz., 45:1 (2005), 41–55 ; Comput. Math. Math. Phys., 45:1 (2005), 37–51 |
4
|
|
2004 |
| 52. |
N. N. Nefedov, M. Radziunas, K. R. Schneider, “Analytical-numerical investigation of delayed exchange of stabilities in singularly perturbed parabolic problems”, Zh. Vychisl. Mat. Mat. Fiz., 44:7 (2004), 1281–1288 ; Comput. Math. Math. Phys., 44:7 (2004), 1213–1220 |
|
2003 |
| 53. |
N. N. Nefedov, K. R. Schneider, “Delay of exchange of stabilities in singularly perturbed parabolic problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 9:1 (2003), 121–130 ; Proc. Steklov Inst. Math., 2003no. , suppl. 1, S144–S154 |
|
2002 |
| 54. |
O. E. Omel'chenko, N. N. Nefëdov, “Boundary-layer solutions to quasilinear integro-differential equations of the second order”, Zh. Vychisl. Mat. Mat. Fiz., 42:4 (2002), 491–503 ; Comput. Math. Math. Phys., 42:4 (2002), 470–482 |
6
|
| 55. |
V. F. Butuzov, N. N. Nefedov, K. R. Schneider, “On a singularly perturbed system of parabolic equations in the case of intersecting roots of the degenerate equation”, Zh. Vychisl. Mat. Mat. Fiz., 42:2 (2002), 185–196 ; Comput. Math. Math. Phys., 42:2 (2002), 176–187 |
2
|
|
2001 |
| 56. |
N. N. Nefedov, A. G. Nikitin, “Asymptotic stability of contrasting structures of step-like data type in singularly perturbed integro-differential equations in two-dimensional case”, Mat. Model., 13:12 (2001), 65–74 |
1
|
| 57. |
N. N. Nefëdov, A. G. Nikitin, “Development of the asymptotic method of differential inequalities for step-type solutions of singularly perturbed integro-differential equations”, Zh. Vychisl. Mat. Mat. Fiz., 41:7 (2001), 1057–1066 ; Comput. Math. Math. Phys., 41:7 (2001), 1005–1014 |
7
|
|
2000 |
| 58. |
N. N. Nefedov, A. G. Nikitin, “The asymptotic method of differential inequalities for singularly perturbed integro-differential equations”, Differ. Uravn., 36:10 (2000), 1398–1404 ; Differ. Equ., 36:10 (2000), 1544–1550 |
15
|
| 59. |
N. N. Nefedov, “An asymptotic method of differential inequalities for the investigation of periodic contrast structures: Existence, asymptotics, and stability”, Differ. Uravn., 36:2 (2000), 262–269 ; Differ. Equ., 36:2 (2000), 298–305 |
34
|
|
1998 |
| 60. |
V. F. Butuzov, N. N. Nefedov, “A singularly perturbed boundary value problem for a second-order equation in the case of variation of stability”, Mat. Zametki, 63:3 (1998), 354–362 ; Math. Notes, 63:3 (1998), 311–318 |
23
|
|
1997 |
| 61. |
V. F. Butuzov, A. B. Vasil'eva, N. N. Nefedov, “Asymptotic Theory of Contrasting Structures. A Survey”, Avtomat. i Telemekh., 1997, no. 7, 4–32 ; Autom. Remote Control, 58:7 (1997), 1068–1091 |
51
|
|
1996 |
| 62. |
V. F. Butuzov, N. N. Nefedov, “Space-periodic contrast structures in singularly perturbed
elliptic problems”, Dokl. Akad. Nauk, 351:6 (1996), 731–734 |
| 63. |
N. N. Nefedov, “Two-dimensional contrast structures of step type: asymptotics,
existence and stability”, Dokl. Akad. Nauk, 349:5 (1996), 603–605 |
| 64. |
N. N. Nefedov, “The method of differential inequalities for nonlinear singularly perturbed problems with contrast structures of step type in the critical case”, Differ. Uravn., 32:11 (1996), 1529–1537 ; Differ. Equ., 32:11 (1996), 1526–1534 |
3
|
| 65. |
A. B. Vasil'eva, N. N. Nefedov, I. V. Radchenko, “An internal transition layer in a singularly perturbed initial-value problem”, Zh. Vychisl. Mat. Mat. Fiz., 36:9 (1996), 105–111 ; Comput. Math. Math. Phys., 36:9 (1996), 1251–1256 |
5
|
|
1995 |
| 66. |
N. N. Nefedov, “The method of differential inequalities for some classes of nonlinear singularly perturbed problems with internal layers”, Differ. Uravn., 31:7 (1995), 1142–1149 ; Differ. Equ., 31:7 (1995), 1077–1085 |
36
|
| 67. |
N. N. Nefedov, “The method of differential inequalities for some singularly perturbed partial differential equations”, Differ. Uravn., 31:4 (1995), 719–722 ; Differ. Equ., 31:4 (1995), 668–671 |
27
|
|
1994 |
| 68. |
N. N. Nefedov, “Nonstationary contrast structures of spike type in nonlinear
singularly perturbed parabolic equations”, Dokl. Akad. Nauk, 336:2 (1994), 165–167 ; Dokl. Math., 49:3 (1994), 489–492 |
1
|
| 69. |
V. T. Volkov, N. N. Nefedov, “Periodic solutions with boundary layers of a singularly perturbed reaction–diffusion model”, Zh. Vychisl. Mat. Mat. Fiz., 34:8-9 (1994), 1307–1315 ; Comput. Math. Math. Phys., 34:8-9 (1994), 1133–1140 |
5
|
|
1992 |
| 70. |
N. N. Nefedov, “Contrast structures of spike type in nonlinear singularly
perturbed elliptic equations”, Dokl. Akad. Nauk, 327:1 (1992), 16–19 ; Dokl. Math., 46:3 (1993), 410–413 |
1
|
| 71. |
N. N. Nefedov, “The nonstationary contrast structures in the reaction-diffusion system”, Mat. Model., 4:8 (1992), 58–65 |
5
|
|
1991 |
| 72. |
N. N. Nefedov, “The contrast structures in the reaction–advection–diffusion equations”, Mat. Model., 3:2 (1991), 135–140 |
|
1989 |
| 73. |
V. F. Butuzov, N. N. Nefedov, E. V. Polezhaeva, “The asymptotic solution of linearized problems on the natural and forced resonance oscillations of a medium of low viscosity”, Zh. Vychisl. Mat. Mat. Fiz., 29:7 (1989), 1023–1035 ; U.S.S.R. Comput. Math. Math. Phys., 29:4 (1989), 41–49 |
3
|
|
1987 |
| 74. |
V. F. Butuzov, N. N. Nefedov, E. V. Fedotova, “Asymptotic solution of the linearized problem of the propagation of sound in a bounded medium with low viscosity”, Zh. Vychisl. Mat. Mat. Fiz., 27:2 (1987), 226–236 ; U.S.S.R. Comput. Math. Math. Phys., 27:1 (1987), 146–153 |
5
|
|
1985 |
| 75. |
N. N. Nefedov, “Asymptotic solution of a problem of modeling heat and mass exchange in interpenetrating media”, Differ. Uravn., 21:10 (1985), 1819–1821 |
|
1978 |
| 76. |
N. N. Nefedov, “A class of singularly perturbed equations”, Zh. Vychisl. Mat. Mat. Fiz., 18:1 (1978), 93–105 ; U.S.S.R. Comput. Math. Math. Phys., 18:1 (1978), 89–101 |
|
1976 |
| 77. |
V. F. Butuzov, N. N. Nefedov, “A problem in the theory of singular perturbations”, Differ. Uravn., 12:10 (1976), 1736–1747 |
3
|
|
|
|
2024 |
| 78. |
S. O. Gorchinskiy, V. G. Danilov, S. Yu. Dobrokhotov, V. V. Kozlov, V. E. Nazaikinskii, N. N. Nefedov, D. O. Orlov, S. A. Stepin, I. A. Taimanov, D. V. Treschev, N. A. Tyurin, A. T. Fomenko, S. E. Yakush, “Andrei Igorevich Shafarevich (on his sixtieth birthday)”, Uspekhi Mat. Nauk, 79:3(477) (2024), 185–188 ; Russian Math. Surveys, 79:3 (2024), 553–556 |
|
2021 |
| 79. |
V. N. Chubarikov, N. M. Dobrovol'skii, I. V. Denisov, A. V. Nesterov, N. N. Nefedov, “To the memory of Valentin Fedorovich Butuzov”, Chebyshevskii Sb., 22:4 (2021), 385–387 |
|
2020 |
| 80. |
V. F. Butuzov, A. A. Bykov, I. E. Mogilevskii, Yu. V. Mukhartova, N. N. Nefedov, A. G. Sveshnikov, D. D. Sokoloff, N. A. Tikhonov, N. E. Shapkina, A. G. Yagola, “Ê ñåìèäåñÿòèïÿòèëåòèþ Àëåêñàíäðà Íèêîëàåâè÷à Áîãîëþáîâà”, Zh. Vychisl. Mat. Mat. Fiz., 60:9 (2020), 1451–1452 |
| 81. |
A. N. Bogolyubov, G. M. Kobel'kov, V. V. Kozlov, V. P. Maslov, E. I. Moiseev, N. N. Nefedov, N. A. Tikhonov, D. D. Sokoloff, A. G. Yagola, “Ê âîñüìèäåñÿòèëåòèþ Âàëåíòèíà Ô¸äîðîâè÷à Áóòóçîâà”, Zh. Vychisl. Mat. Mat. Fiz., 60:2 (2020), 169–170 |
|
2017 |
| 82. |
V. F. Butuzov, S. D. Glyzin, N. N. Nefedov, “From the editors of the special issue”, Model. Anal. Inform. Sist., 24:3 (2017), 257 |
|
2015 |
| 83. |
V. F. Butuzov, A. A. Bykov, A. L. Delitsyn, M. K. Kerimov, I. E. Mogilevskii, Yu. V. Mukhartova, N. N. Nefedov, A. G. Sveshnikov, D. D. Sokoloff, N. A. Tikhonov, N. E. Shapkina, A. G. Yagola, “On the 70th anniversary of birthday of Professor Aleksandr Nikolaevich Bogolyubov”, Zh. Vychisl. Mat. Mat. Fiz., 55:10 (2015), 1635–1636 |
|
2010 |
| 84. |
N. N. Nefedov, L. Recke, K. R. Schneider, “Asymptotic stability via the Krein–Rutman theorem for singularly perturbed parabolic periodic Dirichlet problems”, Regul. Chaotic Dyn., 15:2-3 (2010), 382–389 |
7
|
|
1999 |
| 85. |
A. B. Vasil'eva, V. A. Il'in, N. N. Nefedov, N. Kh. Rozov, A. A. Samarskii, A. G. Sveshnikov, “Valentin Fedorovich Butuzov (on his 60th birthday)”, Uspekhi Mat. Nauk, 54:6(330) (1999), 179–181 ; Russian Math. Surveys, 54:6 (1999), 1265–1267 |
1
|
|
1998 |
| 86. |
A. B. Vasil'eva, V. F. Butuzov, N. N. Nefedov, “Contrast structures in singularly perturbed problems”, Fundam. Prikl. Mat., 4:3 (1998), 799–851 |
96
|
|
| Presentations in Math-Net.Ru |
| 1. |
Existence, asymptotics and Lyapunov's stability of solutions of periodic parabolic boundary -value problems for Tikhonov-type systems N. N. Nefedov
Seminar on nonlinear problems of partial differential equations and mathematical physics December 26, 2023 18:00
|
| 2. |
Êîíòðàñòíûå ñòðóêòóðû â ñèñòåìàõ òèõîíîâñêîãî òèïà N. N. Nefedov
VI International Conference "Function Spaces. Differential Operators. Problems of Mathematical Education", dedicated to the centennial anniversary of the corresponding member of Russian Academy of Sciences, academician of European Academy of Sciences L.D. Kudryavtsev November 16, 2023 17:20
|
| 3. |
Asymptotic approximation of solutions with transition layers of periodic boundary value problems for Burgers type equations and application in boundary control problems N. N. Nefedov, V. T. Volkov
International Conference “Differential Equations and Optimal Control” dedicated to the centenary of the birth of Academician Evgenii Frolovich Mishchenko June 9, 2022 11:30
|
| 4. |
Singularly perturbed problems with boundary and internal layers A. B. Vasil'eva, V. F. Butuzov, N. N. Nefedov
International Conference "Differential Equations and Topology" dedicated to the Centennial Anniversary of L. S. Pontryagin June 22, 2008 10:00
|
|
|
| Organisations |
|
|