Loading [MathJax]/jax/output/SVG/config.js
Сибирский математический журнал
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. матем. журн.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сибирский математический журнал, 2020, том 61, номер 3, страницы 513–527
DOI: https://doi.org/10.33048/smzh.2020.61.303
(Mi smj5998)
 

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

Абсолютная сходимость двойных рядов Фурье — Франклина

Г. Г. Геворкян, М. Г. Григорян

Ереванский государственный университет, ул. А. Манукяна, 1, Ереван 0025, Армения
Список литературы:
Аннотация: Доказано, что для любого $0<\epsilon<1$ существует измеримое множество $E\subset{T=[0},1]^{2}$ с мерой $|E|>1-\epsilon$ такoе, что для каждой функции $f\in L^{1}({T})$ и для любого $0<\eta<1$ можно найти функцию $\tilde{f}\in L^{1}({T})$ с $\iint\limits_{T}| f(x,y)-\tilde{f}(x,y)| \,dxdy\leq\eta,$ совпадающую с $f(x,y)$ на $E$ и такую, что ее двойной ряд Фурье — Франклина абсолютно сходится к ней почти всюду на ${T.}$
Ключевые слова: двойные ряды Фурье, система Франклина, абсолютная сходимость.
Финансовая поддержка Номер гранта
Государственный комитет по науке министерства образования и науки Республики Армения 18-1A074
18-1A148
Исследование выполнено при финансовой поддержке ГКН МОН РА в рамках научных проектов 18-1A074 и 18-1A148.
Статья поступила: 17.08.2019
Окончательный вариант: 17.08.2019
Принята к печати: 19.02.2020
Англоязычная версия:
Siberian Mathematical Journal, 2020, Volume 61, Issue 3, Pages 403–416
DOI: https://doi.org/10.1134/S0037446620030039
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.51
MSC: 35R30
Образец цитирования: Г. Г. Геворкян, М. Г. Григорян, “Абсолютная сходимость двойных рядов Фурье — Франклина”, Сиб. матем. журн., 61:3 (2020), 513–527; Siberian Math. J., 61:3 (2020), 403–416
Цитирование в формате AMSBIB
\RBibitem{GevGri20}
\by Г.~Г.~Геворкян, М.~Г.~Григорян
\paper Абсолютная сходимость двойных рядов Фурье~---~Франклина
\jour Сиб. матем. журн.
\yr 2020
\vol 61
\issue 3
\pages 513--527
\mathnet{http://mi.mathnet.ru/smj5998}
\crossref{https://doi.org/10.33048/smzh.2020.61.303}
\elib{https://elibrary.ru/item.asp?id=43278558}
\transl
\jour Siberian Math. J.
\yr 2020
\vol 61
\issue 3
\pages 403--416
\crossref{https://doi.org/10.1134/S0037446620030039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000540148300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086322067}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/smj5998
  • https://www.mathnet.ru/rus/smj/v61/i3/p513
  • Эта публикация цитируется в следующих 2 статьяx:
    1. Dingyuan Liu, Kaicong Kuang, Yaqin Lu, Kejian Ma, “Geometric nonlinear vibration theory of the Vierendeel Sandwich Plate based on generalized variational method”, Arch Appl Mech, 94:6 (2024), 1667  crossref
    2. Dingyuan Liu, Kejian Ma, Yaqing Lu, Jianchun Xiao, Kaicong Kuang, “Bending theory of Vierendeel Sandwich Plate based on variational method”, Composite Structures, 306 (2023), 116570  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Статистика просмотров:
    Страница аннотации:218
    PDF полного текста:119
    Список литературы:42
    Первая страница:3
     
      Обратная связь:
    math-net2025_04@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025