99 citations to https://www.mathnet.ru/rus/rm4715
  1. А. А. Прокопьев, “Топологические инварианты системы Гамильтона для $B$-фазы сверхтекучего гелия-3”, УМН, 47:4(286) (1992), 207–208  mathnet  mathscinet  zmath  adsnasa; A. A. Prokop'ev, “Topological invariants of the Hamiltonian system for the $B$-phase of superfluid Helium-3”, Russian Math. Surveys, 47:4 (1992), 226–227  crossref  isi
  2. Нгуен Тьен Зунг, “Сложность интегрируемых гамильтоновых систем на заданном изоэнергетическом трехмерном подмногообразии”, Матем. сб., 183:4 (1992), 87–117  mathnet  mathscinet  zmath  adsnasa; Nguyen Tien Zung, “The complexity of integrable Hamiltonian systems on a prescribed three-dimensional constant-energy submanifold”, Russian Acad. Sci. Sb. Math., 75:2 (1993), 507–533  crossref  isi
  3. Е. Н. Селиванова, “Классификация геодезических потоков лиувиллевых метрик на двумерном торе с точностью до топологической эквивалентности”, Матем. сб., 183:4 (1992), 69–86  mathnet  mathscinet  zmath  adsnasa; E. N. Selivanova, “Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence”, Russian Acad. Sci. Sb. Math., 75:2 (1993), 491–505  crossref  isi
  4. Anatory T. Fomenko, Modern Geometric Computing for Visualization, 1992, 3  crossref
  5. В. В. Калашников, “Геометрическое описание минимаксных инвариантов Фоменко интегрируемых гамильтоновых систем на $S^3$, $RP^3$, $S^1\times S^2$$T^3$”, УМН, 46:4(280) (1991), 151–152  mathnet  mathscinet  zmath  adsnasa; V. V. Kalashnikov, “Geometric description of minimax Fomenko invariants of integrable Hamiltonian systems on $S^3$, $RP^3$, $S^1 \times S^2$$T^3$”, Russian Math. Surveys, 46:4 (1991), 177–178  crossref  isi
  6. Б. С. Кругликов, “Топологическая классификация систем Леггетта в одном интегрируемом случае для $^3\mathrm{He-A}$”, УМН, 46:4(280) (1991), 153–154  mathnet  mathscinet  adsnasa; B. S. Kruglikov, “Topological classification of Leggett systems in an integrable case for $^3\mathrm{He-A}$”, Russian Math. Surveys, 46:4 (1991), 179–181  crossref  isi
  7. А. Т. Фоменко, “Топологический инвариант, грубо классифицирующий интегрируемые строго невырожденные гамильтонианы на четырехмерных симплектических многообразиях”, Функц. анализ и его прил., 25:4 (1991), 23–35  mathnet  mathscinet  zmath; A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272  crossref  isi
  8. А. Т. Фоменко, “Теория бордизмов интегрируемых гамильтоновых невырожденных систем с двумя степенями свободы. Новый топологический инвариант многомерных интегрируемых систем”, Изв. АН СССР. Сер. матем., 55:4 (1991), 747–779  mathnet  mathscinet  zmath  adsnasa; A. T. Fomenko, “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759  crossref  isi
  9. Нгуен Тьен Зунг, А. Т. Фоменко, “Топологическая классификация интегрируемых невырожденных гамильтонианов на изоэнергетической трехмерной сфере”, УМН, 45:6(276) (1990), 91–111  mathnet  mathscinet  zmath  adsnasa; Nguyen Tien Zung, A. T. Fomenko, “Topological classification of integrable non-degenerate Hamiltonians on a constant energy three-dimensional sphere”, Russian Math. Surveys, 45:6 (1990), 109–135  crossref  isi
Предыдущая
1
2
3
4
5
6
7
8
9
10