99 citations to https://www.mathnet.ru/rus/rm4715
  1. А. В. Болсинов, “Инварианты Фоменко в теории интегрируемых гамильтоновых систем”, УМН, 52:5(317) (1997), 113–132  mathnet  crossref  mathscinet  zmath  adsnasa; A. V. Bolsinov, “Fomenko invariants in the theory of integrable Hamiltonian systems”, Russian Math. Surveys, 52:5 (1997), 997–1015  crossref  isi
  2. Б. С. Кругликов, “Монотонность функции вращения и антисогласованные контактные структуры”, УМН, 51:1(307) (1996), 153–154  mathnet  crossref  mathscinet  zmath  adsnasa; B. S. Kruglikov, “The monotonicity of the rotation function and anticompatible contact structures”, Russian Math. Surveys, 51:1 (1996), 148–149  crossref  isi
  3. П. И. Топалов, “Критические точки функции вращения интегрируемой гамильтоновой системы”, УМН, 51:4(310) (1996), 147–148  mathnet  crossref  mathscinet  zmath  adsnasa; P. I. Topalov, “Critical points of the rotation function of an integrable Hamiltonian system”, Russian Math. Surveys, 51:4 (1996), 752–753  crossref  isi
  4. О. Е. Орел, С. Такахаши, “Траекторная классификация интегрируемых задач Лагранжа и Горячева–Чаплыгина методами компьютерного анализа”, Матем. сб., 187:1 (1996), 95–112  mathnet  crossref  mathscinet  zmath; O. E. Orel, S. Takahashi, “Orbital classification of the integrable problems of Lagrange and Goryachev–Chaplygin by the methods of computer analysis”, Sb. Math., 187:1 (1996), 93–110  crossref  isi
  5. П. И. Топалов, “Вычисление тонкого инварианта Фоменко–Цишанга для основных интегрируемых случаев движения твердого тела”, Матем. сб., 187:3 (1996), 143–160  mathnet  crossref  mathscinet  zmath; P. I. Topalov, “Computation of the fine Fomenko–Zieschang invariant for the main integrable cases of rigid body motion”, Sb. Math., 187:3 (1996), 451–468  crossref  isi
  6. В. С. Матвеев, “Интегрируемые гамильтоновы системы с двумя степенями свободы. Топологическое строение насыщенных окрестностей точек типа фокус-фокус и седло-седло”, Матем. сб., 187:4 (1996), 29–58  mathnet  crossref  mathscinet  zmath; V. S. Matveev, “Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type”, Sb. Math., 187:4 (1996), 495–524  crossref  isi
  7. V. V. Kalashnikov, “Невырожденные системы и “типичные” свойства интегрируемых гамильтоновых систем”, Зап. научн. сем. ПОМИ, 235 (1996), 184–192  mathnet; V. V. Kalashnikov, “Non-degenerate systems and generic properties of the integrable Hamiltonian systems”, J. Math. Sci. (New York), 94:4 (1999), 1558–1563  mathnet  crossref
  8. А. В. Болсинов, “Гладкая траекторная классификация интегрируемых гамильтоновых систем с двумя степенями свободы”, Матем. сб., 186:1 (1995), 3–28  mathnet  mathscinet  zmath  adsnasa; A. V. Bolsinov, “A smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom”, Sb. Math., 186:1 (1995), 1–27  crossref  isi
  9. О. Е. Орел, “Функция вращения для интегрируемых задач, сводящихся к уравнениям Абеля. Траекторная классификация систем Горячева–Чаплыгина”, Матем. сб., 186:2 (1995), 105–128  mathnet  mathscinet  zmath; O. E. Orel, “Rotation function for integrable problems reducing to the Abel equations. Orbital classification of Goryachev–Chaplygin systems.”, Sb. Math., 186:2 (1995), 271–296  crossref  isi
  10. Л. М. Лерман, Я. Л. Уманский, “Классификация четырехмерных интегрируемых гамильтоновых систем и пуассоновских действий $\mathbb R^2$ в расширенных окрестностях простых особых точек. III. Реализация”, Матем. сб., 186:10 (1995), 89–102  mathnet  mathscinet  zmath; L. M. Lerman, Ya. L. Umanskii, “Classification of four-dimensional integrable Hamiltonian systems and Poisson actions of $\mathbb R^2$ in extended neighbourhoods of simple singular points. III. Realization”, Sb. Math., 186:10 (1995), 1477–1491  crossref  isi
Предыдущая
1
2
3
4
5
6
7
8
9
10
Следующая