99 citations to https://www.mathnet.ru/rus/rm4715
  1. А. В. Болсинов, “О классификации гамильтоновых систем на двумерных поверхностях”, УМН, 49:6(300) (1994), 195–196  mathnet  mathscinet  zmath  adsnasa; A. V. Bolsinov, “The classification of Hamiltonian systems on two-dimensional surfaces”, Russian Math. Surveys, 49:6 (1994), 199–200  crossref  isi
  2. А. В. Болсинов, А. Т. Фоменко, “Интегрируемые геодезические потоки на сфере, порожденные системами Горячева–Чаплыгина и Ковалевской в динамике твердого тела”, Матем. заметки, 56:2 (1994), 139–142  mathnet  mathscinet  zmath; A. V. Bolsinov, A. T. Fomenko, “Integrable geodesic flows on the sphere, generated by Goryachev–Chaplygin and Kowalewski systems in the dynamics of a rigid body”, Math. Notes, 56:2 (1994), 859–861  crossref  isi
  3. В. В. Калашников, “О типичности боттовских интегрируемых гамильтоновых систем”, Матем. сб., 185:1 (1994), 107–120  mathnet  mathscinet  zmath; V. V. Kalashnikov, “On genericity of integrable Hamiltonian systems of Bott type”, Russian Acad. Sci. Sb. Math., 81:1 (1995), 87–99  crossref  isi
  4. А. В. Болсинов, А. Т. Фоменко, “Траекторная эквивалентность интегрируемых гамильтоновых систем с двумя степенями свободы. Теорема классификации. I”, Матем. сб., 185:4 (1994), 27–80  mathnet  mathscinet  zmath; A. V. Bolsinov, A. T. Fomenko, “Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. I”, Russian Acad. Sci. Sb. Math., 81:2 (1995), 421–465  crossref  isi
  5. А. В. Болсинов, А. Т. Фоменко, “Траекторная эквивалентность интегрируемых гамильтоновых систем с двумя степенями свободы. Теорема классификации. II”, Матем. сб., 185:5 (1994), 27–78  mathnet  mathscinet  zmath; A. V. Bolsinov, A. T. Fomenko, “Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. II”, Russian Acad. Sci. Sb. Math., 82:1 (1995), 21–63  crossref  isi
  6. Нгуен Тьен Зунг, Л. С. Полякова, Е. Н. Селиванова, “Топологическая классификация интегрируемых геодезических потоков с дополнительным квадратичным или линейным по импульсам интегралом на двумерных ориентируемых римановых многообразиях”, Функц. анализ и его прил., 27:3 (1993), 42–56  mathnet  mathscinet  zmath; Nguyen Tien Zung, L. S. Polyakova, E. N. Selivanova, “Topological Classification of Integrable Geodesic Flows on Orientable Two-Dimensional Riemannian Manifolds with Additional Integral Depending on Momenta Linearly or Quadratically”, Funct. Anal. Appl., 27:3 (1993), 186–196  crossref  isi
  7. А. В. Болсинов, А. Т. Фоменко, “Траекторная классификация интегрируемых систем типа Эйлера в динамике твердого тела”, УМН, 48:5(293) (1993), 163–164  mathnet  mathscinet  zmath  adsnasa; A. V. Bolsinov, A. T. Fomenko, “Trajectory classification of integrable systems of Euler type in the dynamics of a rigid body”, Russian Math. Surveys, 48:5 (1993), 165–166  crossref
  8. В. В. Калашников, “Боттовость и свойства общего положения интегрируемых гамильтоновых систем”, УМН, 48:6(294) (1993), 151–152  mathnet  mathscinet  zmath  adsnasa; V. V. Kalashnikov, “The Bott property and the property of general position of integrable Hamiltonian systems”, Russian Math. Surveys, 48:6 (1993), 159–160  crossref  isi
  9. О. Е. Орел, “Топологический анализ окрестности вырожденной одномерной орбиты пуассоновского действия $\mathbb R^2$ на симплектическом многообразии $M^4$”, УМН, 48:6(294) (1993), 165–166  mathnet  mathscinet  zmath  adsnasa; O. E. Orel, “Topological analysis of a neighbourhood of a degenerate one-dimensional orbit of the Poisson action of $\mathbb R^2$ on the symplectic manifold $M^4$”, Russian Math. Surveys, 48:6 (1993), 176–177  crossref  isi
  10. Е. В. Аношкина, “Топологическая классификация интегрируемого случая типа Горячева–Чаплыгина с обобщенным потенциалом в динамике твердого тела”, УМН, 47:3(285) (1992), 149–150  mathnet  mathscinet  zmath  adsnasa; E. V. Anoshkina, “A topological classification of the Goryachev–Chaplygin integrable case with a generalized potential in rigid body dynamics”, Russian Math. Surveys, 47:3 (1992), 165–166  crossref  isi
Предыдущая
1
2
3
4
5
6
7
8
9
10
Следующая