Поиск по базе данных литературных ссылок
Соболев С. Л., Некоторые применения функционального анализа в математической физике , Л., 1950
Эта публикация цитируется в:
Теоремы вложения пространств Соболева в области с пиком и в гёльдеровой области В. Г. Мазья, С. В. ПоборчийАлгебра и анализ , 2006, 18 :4 , 95–126
Прямое доказательство возможности факторизации матриц-функций В. М. БабичАлгебра и анализ , 2008, 20 :1 , 3–33
О разрешимости задачи Неймана в области с пиком В. Г. Мазья, С. В. ПоборчийАлгебра и анализ , 2008, 20 :5 , 109–154
Интегральные представления и теоремы вложения для функций, заданных на группах
Гейзенберга $\mathbb H^n$ Н. Н. РомановскийАлгебра и анализ , 2004, 16 :2 , 82–119
К теории классов Орлича–Соболева Д. А. Ковтонюк, В. И. Рязанов, Р. Р. Салимов, Е. А. СевостьяновАлгебра и анализ , 2013, 25 :6 , 50–102
Аналог неравенства Соболева на стратифицированном множестве Н. С. Даирбеков, О. М. Пенкин, Л. О. СарыбековаАлгебра и анализ , 2018, 30 :5 , 149–158
Вариационное условие оптимальности в задаче управления начально-краевыми условиями полулинейных гиперболических систем А. В. Аргучинцев, В. П. ПоплевкоАвтомат. и телемех. , 2008:4 , 17–28
Оптимальное управление коэффициентами квазилинейного эллиптического уравнения Р. К. ТагиевАвтомат. и телемех. , 2010:9 , 19–32
Геометрическая теория особых режимов в системах управления с распределенными параметрами. I А. В. Ахметзянов, А. Г. Кушнер, В. В. ЛычагинАвтомат. и телемех. , 2013:11 , 20–38
Инвариантные многообразия слабодиссипативного варианта нелокального уравнения Гинзбурга–Ландау А. Н. Куликов, Д. А. КуликовАвтомат. и телемех. , 2021:2 , 94–110
Бифуркации паттернов в нелокальном уравнении эрозии Д. А. КуликовАвтомат. и телемех. , 2023:11 , 36–54
Угловой погранслой в нелинейных сингулярно возмущенных параболических уравнениях И. В. Денисов, Т. Ю. Денисова, А. В. РодионовЧебышевский сб. , 2012, 13 :3 , 28–46
Об одной задаче о нагреве проводника В. Н. Павленко, Д. К. ПотаповЧеляб. физ.-матем. журн. , 2021, 6 :3 , 299–311
Об одном классе псевдогиперболических уравнений с неизвестным коэффициентом А. И. Кожанов, Р. Р. СафиулловаЧеляб. физ.-матем. журн. , 2022, 7 :2 , 164–180
Краевые задачи с интегро-дифференциальным нелокальным условием для дифференциальных уравнений составного типа четвёртого порядка А. И. Кожанов, Х. КенжебайЧеляб. физ.-матем. журн. , 2023, 8 :4 , 516–527
Вырождающиеся эллиптические краевые задачи второго порядка в негладких областях М. В. БорсукСМФН , 2005, 13 , 3–137
Оценки $L_p$ -модулей непрерывности на областях с нерегулярной границей и теоремы вложения О. В. БесовСМФН , 2007, 25 , 21–33
Неклассические краевые задачи. I А. Л. СкубачевскийСМФН , 2007, 26 , 3–132
Динамика идеальной жидкости со свободной поверхностью в конформных переменных Р. В. ШаминСМФН , 2008, 28 , 3–144
Неклассические краевые задачи. II А. Л. СкубачевскийСМФН , 2009, 33 , 3–179
Граничные задачи для уравнений четвертого порядка гиперболического и составного типов В. И. Корзюк, О. А. Конопелько, Е. С. ЧебСМФН , 2010, 36 , 87–111
Усреднение в каскадных соединениях с “широкой” трансмиссионной областью Т. П. ЧечкинаСМФН , 2011, 39 , 151–162
Ориентированная степень фредгольмовых отображений. Метод конечномерной редукции В. Г. Звягин, Н. М. РатинерСМФН , 2012, 44 , 3–171
Об абстрактной формуле Грина для тройки гильбертовых пространств и полуторалинейных форм Н. Д. КопачевскийСМФН , 2015, 57 , 71–107
Сингулярные интегральные операторы и эллиптические краевые задачи. I А. П. СолдатовСМФН , 2017, 63 :1 , 1–189
Существование слабого решения интегро-дифференциального уравнения агрегации В. Ф. Вильданова, Ф. Х. МукминовСМФН , 2017, 63 :4 , 557–572
Нелинейные дифференциально-разностные уравнения эллиптического и параболического типа и их приложения к нелокальным задачам О. В. СолонухаСМФН , 2023, 69 :3 , 445–563
Улучшение качества изображений в компьютерной томографии спомощью интегрального преобразования специального вида В. Г. НазаровКомпьютерные исследования и моделирование , 2015, 7 :5 , 1033–1046
Мультипликативные оценки норм производных на области О. В. БесовДокл. РАН. Матем., информ., проц. упр. , 2020, 491 , 11–14
Об уравнениях с непрерывными отображениями в банаховых пространствах К. Н. СолтановФункц. анализ и его прил. , 1999, 33 :1 , 87–92
Двучленная асимптотика спектра краевой задачи при внутреннем отражении общего вида Д. Г. ВасильевФункц. анализ и его прил. , 1984, 18 :4 , 1–13
О невырожденности уравнений, связанных с методом разностных потенциалов И. Л. СофроновФункц. анализ и его прил. , 1984, 18 :4 , 94–95
Об одном классе систем интегральных уравнений Вольтерра первого рода А. АсановФункц. анализ и его прил. , 1983, 17 :4 , 73–74
Об одной разноразмерной вариационной задаче М. П. Бородицкий, И. Б. СимоненкоФункц. анализ и его прил. , 1975, 9 :4 , 63–64
Изгибание поверхностей. III И. Иванова-Каратопраклиева, П. Е. Марков, И. Х. СабитовФундамент. и прикл. матем. , 2006, 12 :1 , 3–56
Ultraparabolic equations with operator coefficients at the time derivatives A. I. KozhanovИзвестия Иркутского государственного университета. Серия Математика , 2019, 29 , 120–137
Задача Самарского – Ионкина с интегральным возмущением для псевдопараболического уравнения А. И. Кожанов, Г. И. ТарасоваИзвестия Иркутского государственного университета. Серия Математика , 2022, 42 , 59–74
Восстановление граничных управлений в модели реакции–конвекции–диффузии А. И. Короткий, Ю. В. СтародубцеваИзв. ИМИ УдГУ , 2015:2 , 85–92
Некоторые признаки параболичности и гиперболичности граничных множеств поверхностей В. М. МиклюковИзв. РАН. Сер. матем. , 1996, 60 :4 , 111–158
Методы приближенного восстановления функций, заданных на хаотических сетках О. В. МатвеевИзв. РАН. Сер. матем. , 1996, 60 :5 , 111–156
Точные оценки минимальной нормы операторов продолжения для пространств Соболева В. И. Буренков, А. Л. ГорбуновИзв. РАН. Сер. матем. , 1997, 61 :1 , 3–44
Изучение свойств функций из пространства Орлича в зависимости от геометрии их спектра Ха Зуй БангИзв. РАН. Сер. матем. , 1997, 61 :2 , 163–198
Некоторые свойства индексов дефекта симметрических вырождающихся эллиптических операторов второго порядка в $L^2(\mathbb R^m)$ Ю. Б. ОрочкоИзв. РАН. Сер. матем. , 1997, 61 :5 , 71–98
Об одной краевой задаче для гиперболических уравнений С. Д. ТроицкаяИзв. РАН. Сер. матем. , 1998, 62 :2 , 193–224
О решениях смешанных краевых задач для системы теории упругости в неограниченных областях О. А. МатевосянИзв. РАН. Сер. матем. , 2003, 67 :5 , 49–82
Восстановление функций вместе с их производными по значениям функций в заданном числе точек С. Н. КудрявцевИзв. РАН. Сер. матем. , 1994, 58 :6 , 79–104
О собственных значениях “гантели с тонкой ручкой” Р. Р. ГадыльшинИзв. РАН. Сер. матем. , 2005, 69 :2 , 45–110
Асимптотические разложения собственных значений и собственных функций эллиптического оператора в области с большим количеством близко расположенных на границе “легких” концентрированных масс. Двумерный случай Г. А. ЧечкинИзв. РАН. Сер. матем. , 2005, 69 :4 , 161–204
$L_2$ -теория обобщенных решений общих линейных модельных параболических граничных задач Н. В. ЖитарашуИзв. АН СССР. Сер. матем. , 1987, 51 :5 , 962–993
Сингулярные параболические уравнения и марковские процессы А. Н. КочубейИзв. АН СССР. Сер. матем. , 1984, 48 :1 , 77–103
К вопросу о расширении многомерных вариационных задач Ф. В. ГусейновИзв. АН СССР. Сер. матем. , 1986, 50 :1 , 3–21
Ограниченность и почти-периодичность по времени решений эволюционных
вариационных неравенств А. А. ПанковИзв. АН СССР. Сер. матем. , 1982, 46 :2 , 314–346
$L_p$ -сходимость полиномов Бибербаха И. В. КуликовИзв. АН СССР. Сер. матем. , 1979, 43 :5 , 1121–1144
Поперечники некоторых конечномерных множеств и классов гладких функций Б. С. КашинИзв. АН СССР. Сер. матем. , 1977, 41 :2 , 334–351
О сходимости полиномов Бибербаха в случае липшицевой области И. Б. СимоненкоИзв. АН СССР. Сер. матем. , 1978, 42 :4 , 870–878
Управление марковскими процессами и пространства $W$ Н. В. КрыловИзв. АН СССР. Сер. матем. , 1971, 35 :1 , 224–255
О смешанной задаче для гиперболического уравнения второго порядка В. Р. НосовИзв. АН СССР. Сер. матем. , 1969, 33 :2 , 379–395
Теоремы вложения и геометрические неравенства В. С. КлимовИзв. АН СССР. Сер. матем. , 1976, 40 :3 , 645–671
Исследование спектра дифференциальных операторов квантово-механических систем многих частиц в пространствах функций заданной симметрии Г. М. ЖислинИзв. АН СССР. Сер. матем. , 1969, 33 :3 , 590–649
К вопросу о нежесткости в нелинейной теории пологих оболочек Л. С. СрубщикИзв. АН СССР. Сер. матем. , 1972, 36 :4 , 890–909
О теоремах вложения одного естественного расширения Соболевского
класса $W^l_p(\Omega)$ Ю. В. РыбаловИзв. АН СССР. Сер. матем. , 1970, 34 :1 , 145–155
Вложение некоторых классов функций $H_p^\omega$ П. Л. УльяновИзв. АН СССР. Сер. матем. , 1968, 32 :3 , 649–686
Энергетическое неравенство и свойство переопределенности
системы собственных функций В. И. ПлотниковИзв. АН СССР. Сер. матем. , 1968, 32 :4 , 743–755
Решение первой краевой задачи для самосопряженных эллиптических
уравнений в случае неограниченной области Л. Д. КудрявцевИзв. АН СССР. Сер. матем. , 1967, 31 :5 , 1179–1199
Усреднение спектральных задач с сингулярным возмущением условия Стеклова А. Г. ЧечкинаИзв. РАН. Сер. матем. , 2017, 81 :1 , 203–240
Градиентная катастрофа в обобщенных уравнениях Бюргерса и Буссинеска Е. В. Юшков, М. О. КорпусовИзв. РАН. Сер. матем. , 2017, 81 :6 , 232–242
Осреднение пластин Кирхгофа с осциллирующими кромками и точечными опорами С. А. НазаровИзв. РАН. Сер. матем. , 2020, 84 :4 , 110–168
Представление решения задачи Коши для одномерного уравнения Шрёдингера с ограниченным гладким потенциалом в виде квазифейнмановских формул Д. В. Гришин, Я. Ю. ПавловскийИзв. РАН. Сер. матем. , 2021, 85 :1 , 27–65
Внутренние оценки решений линейных эллиптических неравенств В. С. КлимовИзв. РАН. Сер. матем. , 2021, 85 :1 , 98–117
Функциональные и аналитические свойства одного класса отображений квазиконформного анализа С. К. Водопьянов, А. О. ТомиловИзв. РАН. Сер. матем. , 2021, 85 :5 , 58–109
Об одном классе квазилинейных уравнений эллиптического типа с разрывными нелинейностями В. Н. Павленко, Д. К. ПотаповИзв. РАН. Сер. матем. , 2022, 86 :6 , 143–160
Об одном методе решения смешанной краевой задачи для уравнения гиперболического типа с помощью операторов $\mathbb{AT}_{\lambda,j}$ А. Ю. ТрынинИзв. РАН. Сер. матем. , 2023, 87 :6 , 121–149
The boundary behavior of $\mathcal Q_{p,q}$ -homeomorphisms S. K. Vodopyanov, A. O. MolchanovaИзв. РАН. Сер. матем. , 2023, 87 :4 , 47–90
Колмогоровские поперечники пересечения конечного семейства классов Соболева А. А. ВасильеваИзв. РАН. Сер. матем. , 2024, 88 :1 , 21–46
Краевые задачи для уравнений соболевского типа с необратимым оператором при старшей производной А. И. КожановИтоги науки и техн. Соврем. мат. и ее прил. Темат. обз. , 2019, 167 , 34–41
Бифуркации инвариантных торов у квазилинейных эволюционных уравнений второго порядка в гильбертовом пространстве и сценарий перехода к турбулентности А. Н. КуликовИтоги науки и техн. Соврем. мат. и ее прил. Темат. обз. , 2019, 168 , 45–52
Краевые задачи для одного класса уравнений составного типа с волновым оператором в старшей части А. И. Кожанов, Т. П. ПлехановаИтоги науки и техн. Соврем. мат. и ее прил. Темат. обз. , 2020, 188 , 76–83
Корректность и некорректность краевых задач для одного класса дифференциальных уравнений соболевского типа четвертого порядка А. И. КожановИтоги науки и техн. Соврем. мат. и ее прил. Темат. обз. , 2021, 198 , 68–75
Инвариантные торы слабо диссипативного варианта уравнения Гинзбурга—Ландау А. Н. КуликовИтоги науки и техн. Соврем. мат. и ее прил. Темат. обз. , 2022, 216 , 66–75
Инвариантные многообразия и аттракторы периодической краевой задачи уравнения Курамото—Сивашинского с учетом дисперсии А. Н. Куликов, Д. А. КуликовИтоги науки и техн. Соврем. мат. и ее прил. Темат. обз. , 2023, 226 , 69–79
Теоретические оценки погрешностей приближения производных для МКСЭ С. А. ЛазареваПрепринты ИПМ им. М. В. Келдыша , 2008 , 100, 35 стр.
Точность аппроксимаций метода конечных суперэлементов Федоренко в пространствах Соболева С. А. ЛазареваПрепринты ИПМ им. М. В. Келдыша , 2008 , 101, 32 стр.
О неравенствах типа Джексона и Бернштейна для приближений метода конечных суперэлементов М. П. Галанин, С. А. ЛазареваПрепринты ИПМ им. М. В. Келдыша , 2008 , 102, 26 стр.
О моделях диффузной границы для описания динамики объектов высшей коразмерности Е. В. Зипунова, Е. Б. СавенковПрепринты ИПМ им. М. В. Келдыша , 2020 , 122, 34 стр.
Некоторые варианты интегральных представлений дифференцируемых функций весовых пространств Н. А. НейматовМеждунар. науч.-исслед. журн. , 2015 :8 , 114–119
Дифференциальные свойства функций $f \in V_{p, \theta}^{<m+\alpha ; N>}(G ; s)$ Н. А. НейматовМеждунар. науч.-исслед. журн. , 2022 :2 , 15–23
Восстановление отображения по матрице Якоби, нормированной однородной функцией В. В. ЕгоровИзв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика , 2007, 7 :2 , 14–20
О непрерывности некоторых классов и подклассов отображений c $s$ -усредненной характеристикой А. Н. МалютинаИзв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика , 2022, 22 :3 , 287–292
Аппроксимация краевых задач эллиптического типа со спектральным параметром и разрывной нелинейностью В. Н. Павленко, Д. К. ПотаповИзв. вузов. Матем. , 2005:4 , 49–55
О наилучшей оценке погрешности метода усредняющих ядер в задаче дифференцирования зашумленной функции Г. Г. СкорикИзв. вузов. Матем. , 2004:3 , 76–80
Исследование численного метода решения спектральной задачи теории диэлектрических волноводов Е. М. КарчевскийИзв. вузов. Матем. , 1999:1 , 10–17
Задача Гильберта для линейной эллиптической системы
первого порядка с нефинитными
коэффициентами на римановой поверхности с краем И. А. БикчантаевИзв. вузов. Матем. , 2006:1 , 16–24
Оценка погрешности метода средних функций в задаче
численного дифференцирования зашумленной функции Г. Г. СкорикИзв. вузов. Матем. , 2006:2 , 35–41
Об одной задаче оптимального управления для уравнения Шредингера с вещественнозначным коэффициентом Н. М. МахмудовИзв. вузов. Матем. , 2010:11 , 31–40
Критерии вложения классов типа Морри Н. Темиргалиев, М. А. Жайнибекова, Г. Т. ДжумакаеваИзв. вузов. Матем. , 2015:5 , 80–85
Существование решения задачи Коши для уравнения агрегации в гиперболическом пространстве В. Ф. ВильдановаИзв. вузов. Матем. , 2020:7 , 33–44
Единственность решения задачи Коши для уравнения агрегации в гиперболическом пространстве В. Ф. ВильдановаИзв. вузов. Матем. , 2021:8 , 27–36
Об одном методе решения смешанной краевой задачи для уравнения параболического типа с помощью операторов $\mathbb{AT}_{\lambda,j}$ А. Ю. ТрынинИзв. вузов. Матем. , 2024:2 , 59–80
Дополнительные главы курса “Уравнения математической физики” В. П. Михайлов, А. К. ГущинЛекц. курсы НОЦ , 2007, 7 , 3–144
Бифуркации однородного цикла обобщенного кубического уравнения Шредингера в треугольнике Д. А. КуликовМодел. и анализ информ. систем , 2008, 15 :2 , 50–54
Формирование волнового нанорельефа при распылении поверхности ионной бомбардировкой. Нелокальная модель эрозии Д. А. Куликов, А. С. РудыйМодел. и анализ информ. систем , 2012, 19 :5 , 40–49
О математическом моделировании физических полей в неоднородных массивах и приложении к прочностным расчетам пространственных конструкций В. Н. Бакулин, Т. В. Бурнышева, В. О. Каледин, В. О. Каледин, Е. В. Кузнецова, В. В. РепинскийМатем. моделирование , 2004, 16 :6 , 13–17
Вихревые токи в проводящей пластине с неоднородными анизотропными свойствами Т. В. Кочубей, В. И. АстаховМатем. моделирование , 2011, 23 :8 , 19–32
Новые классы функциональных пространств и сингулярные операторы Г. Г. Казарян, А. Н. Карапетянц, В. Н. Маргарян, Г. А. Мкртчян, А. Г. СергеевТр. ММО , 2021, 82 :2 , 329–348
Асимптотика погрешностей усложненных кубатурных формул В. И. ПоловинкинМатем. тр. , 2004, 7 :2 , 109–125
Интегральные представления типа Соболева для функций, определенных на группах Карно Е. А. ПлотниковаМатем. тр. , 2008, 11 :1 , 113–131
Дробные мультианизотропные пространства и теоремы вложения для них Г. А. КарапетянМатем. тр. , 2019, 22 :2 , 76–89
Об уравнении Карлемана–Векуа с нефинитными коэффициентами на некомпактной римановой поверхности И. А. БикчантаевМатем. заметки , 2004, 75 :1 , 3–12
Об оценке решений краевых задач в областях с концентрированными массами, периодически расположенными вдоль границы. Случай “легких” масс Г. А. ЧечкинМатем. заметки , 2004, 76 :6 , 928–944
Базисы в пространствах Соболева на ограниченных областях с липшицевой границей О. В. МатвеевМатем. заметки , 2002, 72 :3 , 408–417
О совпадении спектров линейных дифференциальных операторов с частными производными в некоторых функциональных пространствах В. М. ТюринМатем. заметки , 2002, 72 :6 , 909–917
Спектральные асимптотики для одной стационарной задачи теплопроводности в перфорированной области С. Е. ПастуховаМатем. заметки , 2001, 69 :4 , 600–612
Коэрцитивные оценки для линейных дифференциальных операторов с постоянными коэффициентами Н. Н. РомановскийМатем. заметки , 2001, 70 :2 , 316–320
О решениях внешней задачи Дирихле для бигармонического уравнения с конечным весовым интегралом Дирихле О. А. МатевосянМатем. заметки , 2001, 70 :3 , 403–418
Арифметические распределения и секвенциальное продолжение бинарных отношений С. Я. СеровайскийМатем. заметки , 1999, 65 :6 , 836–853
Неравенства Харди в функциональных пространствах, содержащих производные нецелого порядка Р. В. ГусейновМатем. заметки , 1998, 63 :5 , 673–678
Устойчивость захваченных поверхностных волн при малых возмущениях плотности верхнего слоя П. Н. Жевандров, А. Е. МерзонМатем. заметки , 1998, 64 :6 , 943–946
Интегральное представление функций и вложение пространств Соболева на областях с нулевыми углами Д. А. ЛабутинМатем. заметки , 1997, 61 :2 , 201–219
Об одном методе интерполирования функций на хаотических сетках О. В. МатвеевМатем. заметки , 1997, 62 :3 , 404–417
Неравенства для истокопредставимых функций и их приложения Р. Х. СадиковаМатем. заметки , 1997, 62 :4 , 564–576
Спектральный синтез в весовых пространствах Соболева Н. О. БеловаМатем. заметки , 1994, 56 :2 , 136–139
Обобщенная метрика Помпейю в проблеме изометрии гиперпространств В. В. Асеев, А. В. Тетенов, А. П. МаксимоваМатем. заметки , 2005, 78 :2 , 163–170
Вложение пространства Соболева в пространство Орлича для области с нерегулярной границей Б. В. ТрушинМатем. заметки , 2006, 79 :5 , 767–778
Точные константы в неравенствах для промежуточных производных в $n$ -мерном пространстве А. А. ЛуневМатем. заметки , 2009, 85 :3 , 476–479
Об аддитивности пространства плотностей потенциалов простого слоя с конечным интегралом Дирихле и
суммируемости нормальных производных гармонических функций из $W_2^1$ на липшицевых поверхностях В. И. АстаховМатем. заметки , 2011, 90 :5 , 659–664
Вложение пространства Соболева и свойства области О. В. БесовМатем. заметки , 2014, 96 :3 , 343–349
Глобальная разрешимость начально-краевых задач для некоторых нелинейных аналогов уравнения Буссинеска Ш. Амиров, А. И. КожановМатем. заметки , 2016, 99 :2 , 171–180
О решениях задачи Неймана для бигармонического уравнения в неограниченных областях О. А. МатевосянМатем. заметки , 2015, 98 :6 , 944–947
Методы решения некорректных экстремальных задач,
обладающие оптимальным и экстраоптимальным качеством А. С. ЛеоновМатем. заметки , 2019, 105 :3 , 406–420
Теоремы вложения для общих мультианизотропных пространств Г. А. Карапетян, М. К. АракелянМатем. заметки , 2018, 104 :3 , 422–438
Критерий нормированной алгебры
в шкале соболевских пространств М. Д. РамазановМатем. заметки , 2021, 109 :3 , 475–478
Обратные задачи определения параметра поглощения
в уравнении диффузии А. И. КожановМатем. заметки , 2019, 106 :3 , 395–408
Мультипликативные оценки производных на области О. В. БесовМатем. заметки , 2020, 108 :4 , 507–514
Интегральный аналог первой начально-краевой задачи
для гиперболических и параболических уравнений второго порядка А. И. Кожанов, А. В. ДюжеваМатем. заметки , 2022, 111 :4 , 540–550
Обратные неравенства для субэллиптических функций В. С. КлимовМатем. заметки , 2022, 111 :4 , 525–539
Краевые задачи для квазигиперболических уравнений с вырождением А. И. Кожанов, Н. Р. СпиридоноваМатем. заметки , 2022, 112 :6 , 825–838
Задача Трикоми для одного класса многомерных гиперболо-эллиптических уравнений С. А. АлдашевМатем. заметки , 2023, 113 :5 , 646–654
О разрешимости нелинейных параболических функционально-дифференциальных уравнений со сдвигами по пространственным переменным О. В. СолонухаМатем. заметки , 2023, 113 :5 , 747–763
Стационарная система Навье–Стокса–Буссинеска
с регуляризованной диссипативной функцией Е. С. БарановскийМатем. заметки , 2024, 115 :5 , 665–678
Приближенное решение нелинейного параболического и обыкновенного дифференциального уравнений и приближенный расчет функционала качества при известных управляющих воздействиях Т. К. ЮлдашевПробл. управл. , 2014, 4 , 2–8
Полиномиальное свойство самосопряженных эллиптических краевых задач и алгебраическое описание их атрибутов С. А. НазаровУМН , 1999, 54 :5 , 77–142
Симметризация в геометрической теории функций комплексного переменного В. Н. ДубининУМН , 1994, 49 :1 , 3–76
Пространства на множествах Г. ТрибельУМН , 2005, 60 :6 , 187–206
Краевые задачи для системы теории упругости в неограниченных областях. Неравенства Корна В. А. Кондратьев, О. А. ОлейникУМН , 1988, 43 :5 , 55–98
Обобщенные римановы пространства А. Д. Александров, В. Н. Берестовский, И. Г. НиколаевУМН , 1986, 41 :3 , 3–44
Двусторонние оценки фундаментальных решений параболических уравнений второго порядка и некоторые их приложения Ф. О. Порпер, С. Д. ЭйдельманУМН , 1984, 39 :3 , 107–156
Об уравнении Шрёдингера с обобщенным потенциалом Ю. А. РозановУМН , 1985, 40 :4 , 191–192
Теория мультипликаторов в пространствах
дифференцируемых функций В. Г. Мазья, Т. О. ШапошниковаУМН , 1983, 38 :3 , 23–86
Интегральные операторы Фурье и канонический оператор В. Е. Назайкинский, В. Г. Ошмян, Б. Ю. Стернин, В. Е. ШаталовУМН , 1981, 36 :2 , 81–140
П. С. Александров и А. Н. Колмогоров в Днепропетровске С. М. НикольскийУМН , 1983, 38 :4 , 37–49
Аттракторы эволюционных уравнений с частными
производными и оценки их размерности А. В. Бабин, М. И. ВишикУМН , 1983, 38 :4 , 133–187
Об одном интегро-дифференциальном уравнении М. Ф. СухининУМН , 1977, 32 :1 , 175–176
Особенности ядер интегральных операторов Фурье и асимптотика
решения смешанной задачи М. В. ФедорюкУМН , 1977, 32 :6 , 67–115
Регулярность решений квазилинейных эллиптических систем А. И. КошелевУМН , 1978, 33 :4 , 3–49
Алгебра псевдодифференциальных операторов с аналитическими символами и ее приложения к математической физике Ю. А. ДубинскийУМН , 1982, 37 :5 , 97–137
Субэллиптические операторы Ю. В. ЕгоровУМН , 1975, 30 :2 , 57–114
О геометрических
свойствах функций с первыми обобщенными производными С. К. Водопьянов, В. М. Гольдштейн, Ю. Г. РешетнякУМН , 1979, 34 :1 , 17–65
Дискретизация задачи о поперечниках В. Е. МайоровУМН , 1975, 30 :6 , 179–180
Пространства Соболева бесконечного порядка Ю. А. ДубинскийУМН , 1991, 46 :6 , 97–131
К теории обобщенных функций Ю. В. ЕгоровУМН , 1990, 45 :5 , 3–40
Об оптимальном управлении распределенными системами Ж. Л. ЛионсУМН , 1973, 28 :4 , 15–46
Задача Коши и связанные с ней задачи для уравнений в свертках Л. Р. Волевич, С. Г. ГиндикинУМН , 1972, 27 :4 , 65–143
О неравенствах в частных производных Ж. Л. ЛионсУМН , 1971, 26 :2 , 205–263
Граничные задачи для систем псевдодифференциальных операторов 1-го порядка М. С. АграновичУМН , 1969, 24 :1 , 61–125
О гиперболических уравнениях второго порядка, вырождающихся
внутри области и на ее границе О. А. ОлейникУМН , 1969, 24 :2 , 229–230
Основания глобального анализа Д. ИллсУМН , 1969, 24 :3 , 157–210
Об ограниченно неоднородных нелинейных эллиптических и параболических уравнениях на плоскости Н. В. КрыловУМН , 1969, 24 :4 , 201–202
Квазилинейные эллиптические и параболические уравнения любого порядка Ю. А. ДубинскийУМН , 1968, 23 :1 , 45–90
Проблемы локализации и сходимости для рядов Фурье по фундаментальным
системам функций оператора Лапласа В. А. ИльинУМН , 1968, 23 :2 , 61–120
Эллиптические уравнения в свертках в ограниченной области и их приложения М. И. Вишик, Г. И. ЭскинУМН , 1967, 22 :1 , 15–76
О приближенном решении задач математической физики В. Д. КупрадзеУМН , 1967, 22 :2 , 59–107
О функции Грина задачи Дирихле Н. В. КрыловУМН , 1967, 22 :2 , 116–118
Некоторые свойства квазидиффузионного процесса Н. В. КрыловУМН , 1966, 21 :1 , 177–179
Шкалы банаховых пространств С. Г. Крейн, Ю. И. ПетунинУМН , 1966, 21 :2 , 89–168
Интерполяционные пространства и уравнения в частных производных Э. МадженесУМН , 1966, 21 :2 , 169–218
К теории вложения анизотропных пространств Соболева С. Н. Кружков, И. М. КолодийУМН , 1983, 38 :2 , 207–208
О сильной и слабой ассоциированности весовых пространств Соболева первого порядка В. Д. Степанов, Е. П. УшаковаУМН , 2023, 78 :1 , 167–204
О разрешимости одного эллиптического уравнения в полупространстве Л. Н. БондарьСиб. электрон. матем. изв. , 2012, 9 , 618–638
Оценка погрешности обобщенной формулы М. А. Лаврентьева нормой дробного пространства Соболева А. И. ПарфёновСиб. электрон. матем. изв. , 2013, 10 , 335–377
Об оценке приближения кусочно-непрерывного решения линейного операторного уравнения В. П. ТананаСиб. журн. индустр. матем. , 2006, 9 :3 , 124–138
Соболев и Шварц: две судьбы, две славы С. С. КутателадзеСиб. журн. индустр. матем. , 2008, 11 :3 , 5–14
Асимптотическое разложение решения системы уравнений упругости с сосредоточенной импульсной силой В. Г. РомановСиб. журн. индустр. матем. , 2008, 11 :3 , 102–118
О разрешимости краевых задач для квазилинейных ультрапараболических уравнений некоторых математических моделей динамики биологических систем А. И. КожановСиб. журн. индустр. матем. , 2009, 12 :4 , 64–78
Энергетический метод расчета квазистационарных атмосферных электрических полей В. В. ДенисенкоСиб. журн. индустр. матем. , 2011, 14 :1 , 56–69
Наилучшие в среднем квазиконформные отображения Р. М. ГариповСиб. журн. индустр. матем. , 2011, 14 :1 , 70–82
Об одной обратной задаче для уравнения типа Бюргерса Ю. Я. Белов, К. В. КоршунСиб. журн. индустр. матем. , 2013, 16 :3 , 28–40
Интегродифференциальный индикатор для задачи одноракурсной томографии Д. С. Аниконов, В. Г. Назаров, И. В. ПрохоровСиб. журн. индустр. матем. , 2014, 17 :2 , 3–10
Разрешимость смешанной задачи для некоторых сильно нелинейных уравнений соболевского типа высокого порядка Ш. Амиров, А. И. КожановСиб. журн. индустр. матем. , 2014, 17 :4 , 14–30
О корректности неоднородной краевой задачи для уравнений смесей вязких сжимаемых жидкостей А. А. Жалнина, Н. А. КучерСиб. журн. индустр. матем. , 2015, 18 :3 , 26–39
Зависимость от области решений краевой задачи для уравнений смесей вязких сжимаемых жидкостей А. А. Жалнина, Н. А. КучерСиб. журн. индустр. матем. , 2017, 20 :1 , 41–52
Уравнение теплопроводности с неизвестным коэффициентом теплоёмкости А. И. КожановСиб. журн. индустр. матем. , 2020, 23 :1 , 93–106
К оценкам погрешности схем проекционно-разностного метода для гиперболических уравнений С. Е. ЖелезовскийСиб. журн. вычисл. матем. , 2004, 7 :4 , 309–325
О допустимом классе восполнений для дискретно-стохастических процедур глобальной оценки функций А. В. ВойтишекСиб. журн. вычисл. матем. , 1998, 1 :2 , 119–134
Корректность одной операторно-дифференциальной схемы и обоснование метода Галеркина для гиперболических уравнений А. Д. Ляшко, С. Е. ЖелезовскийСиб. журн. вычисл. матем. , 2000, 3 :4 , 357–368
Применение СДУ к оценке решения уравнений теплопроводности с разрывными коэффициентами С. А. ГусевСиб. журн. вычисл. матем. , 2015, 18 :2 , 147–161
О смешанной задаче с неоднородными граничными условиями
для эллиптических с параметром уравнений второго порядка в липшицевых областях Б. В. ПальцевМатем. сб. , 1996, 187 :4 , 59–116
Признаки неустойчивости поверхностей нулевой средней кривизны
в искривленных лоренцевых произведениях В. А. Клячин, В. М. МиклюковМатем. сб. , 1996, 187 :11 , 67–88
Колмогоровская $\varepsilon$ -энтропия аттракторов систем реакции-диффузии М. И. Вишик, В. В. ЧепыжовМатем. сб. , 1998, 189 :2 , 81–110
О весовых соболевских пространствах В. В. ЖиковМатем. сб. , 1998, 189 :8 , 27–58
Асимптотика ограниченных управлений
для сингулярной эллиптической задачи
в области с малой полостью А. Р. ДанилинМатем. сб. , 1998, 189 :11 , 27–60
Интерполирование $D^m$ -сплайнами и базисы в пространствах Соболева О. В. МатвеевМатем. сб. , 1998, 189 :11 , 75–102
Оценки скорости стабилизации при $t\to\infty$ решения первой смешанной задачи для квазилинейной системы параболических уравнений второго порядка Л. М. Кожевникова, Ф. Х. МукминовМатем. сб. , 2000, 191 :2 , 91–131
О гиперболических уравнениях второго порядка с сильным характеристическим вырождением на начальной гиперплоскости А. В. ДерябинаМатем. сб. , 2000, 191 :4 , 29–52
Аппроксимация сингулярно возмущенной эллиптической задачи
оптимального управления А. Р. ДанилинМатем. сб. , 2000, 191 :10 , 3–12
Теоремы искажения для полиномов на окружности В. Н. ДубининМатем. сб. , 2000, 191 :12 , 51–60
Теорема вложения Соболева для области с нерегулярной границей О. В. БесовМатем. сб. , 2001, 192 :3 , 3–26
О решениях внешних краевых задач для системы теории упругости в весовых пространствах О. А. МатевосянМатем. сб. , 2001, 192 :12 , 25–60
Бесконечномерная версия теории Морса для липшицевых функционалов В. С. КлимовМатем. сб. , 2002, 193 :6 , 105–122
Стабилизация решения двумерной системы уравнений
Навье–Стокса в неограниченной области с несколькими
выходами на бесконечность Н. А. ХисамутдиноваМатем. сб. , 2003, 194 :3 , 83–114
К обратимости линейных дифференциальных операторов
с частными производными в пространствах Гёльдера и Соболева О. А. Митина, В. М. ТюринМатем. сб. , 2003, 194 :5 , 97–108
Поведение решений нелинейной вариационной задачи в окрестности особых точек границы и на бесконечности Г. В. ГришинаМатем. сб. , 1993, 184 :3 , 81–110
Достаточные условия локальной квазиконформности для отображений с ограниченным искажением И. В. ЖуравлевМатем. сб. , 1993, 184 :4 , 51–60
Усреднение краевых задач с сингулярным возмущением граничных условий Г. А. ЧечкинМатем. сб. , 1993, 184 :6 , 99–150
Асимптотики собственных элементов лапласиана
с сингулярными возмущениями граничных
условий на узких и тонких множествах М. Ю. ПланидаМатем. сб. , 2005, 196 :5 , 83–120
О конвекции сильно вязкой нетеплопроводной жидкости В. И. ЮдовичМатем. сб. , 2007, 198 :1 , 127–158
Двумерная задача о протекании для стационарных уравнений Эйлера О. В. ТрошкинМатем. сб. , 1989, 180 :3 , 354–374
Граничные задачи для обобщенных дифференциальных уравнений В. А. Булычёв, Ф. Ф. ФроловМатем. сб. , 1988, 177 :3 , 275–296
О задаче Дирихле для эллиптического уравнения второго порядка А. К. ГущинМатем. сб. , 1988, 179 :1 , 19–64
О корректности эволюционных задач механики вязкопластических сред В. С. КлимовМатем. сб. , 1988, 179 :3 , 352–363
Общая теорема существования для многомерных экстремальных задач Ф. В. ГусейновМатем. сб. , 1986, 171 :3 , 440–446
О наилучших показателях Гёльдера для обобщенных решений задачи Дирихле для эллиптического уравнения второго порядка В. А. Кондратьев, И. Копачек, О. А. ОлейникМатем. сб. , 1986, 173 :1 , 113–125
Об асимптотических “собственных функциях” задачи Коши для одного нелинейного параболического уравнения В. А. Галактионов, С. П. Курдюмов, А. А. СамарскийМатем. сб. , 1985, 168 :4 , 435–472
К теоремам вложения анизотропных классов функций В. С. КлимовМатем. сб. , 1985, 169 :2 , 198–208
Об уравнениях типа Шредингера с обобщенным потенциалом Ю. А. РозановМатем. сб. , 1985, 169 :4 , 483–493
О некоторых обобщениях задачи Дирихле Ю. А. РозановМатем. сб. , 1983, 162 :3 , 291–310
Обобщенные решения задачи Коши для уравнения Кортевега–де Фриза С. Н. Кружков, А. В. ФаминскийМатем. сб. , 1983, 162 :3 , 396–425
Об изоморфизме пространств С. Л. Соболева переменного порядка Нгуен Минь ЧыонгМатем. сб. , 1983, 163 :1 , 3–17
Теоремы о полном наборе изоморфизмов в $L_2$ -теории обобщенных решений граничных задач для одного параболического по И. Г. Петровскому уравнения Н. В. ЖитарашуМатем. сб. , 1985, 170 :4 , 451–473
О разрешимости квазилинейных эллиптических уравнений
произвольного порядка С. И. ПохожаевМатем. сб. , 1982, 159 :2 , 251–265
О спектре некоторых нелокальных эллиптических
краевых задач А. Л. СкубачевскийМатем. сб. , 1982, 159 :4 , 548–558
Аналог принципа Сен-Венана для полигармонического
уравнения и его приложения И. Н. ТавхелидзеМатем. сб. , 1982, 160 :2 , 236–251
Экспоненциально сходящийся метод решения уравнения Лапласа на многоугольниках Е. А. ВолковМатем. сб. , 1979, 151 :3 , 323–354
Пределы банаховых пространств. Теоремы вложения. Применения к пространствам Соболева бесконечного порядка Ю. А. ДубинскийМатем. сб. , 1979, 152 :3 , 428–439
К работе “Марковские случайные поля и стохастические уравнения с частными производными” Ю. А. РозановМатем. сб. , 1978, 148 :3 , 484–492
Асимптотическое поведение решений второй краевой задачи при измельчении границы области Е. Я. ХрусловМатем. сб. , 1978, 148 :4 , 604–621
Об уравнениях вида $\Delta u=f(x,u,Du)$ С. И. ПохожаевМатем. сб. , 1980, 155 :2 , 324–338
О линейных поперечниках соболевских классов и цепочках экстремальных подпространств В. Е. МайоровМатем. сб. , 1980, 155 :3 , 437–463
Смешанная задача для некоторых классов нелинейных
уравнений третьего порядка А. И. КожановМатем. сб. , 1982, 160 :4 , 504–522
Марковские случайные поля и стохастические уравнения с частными производными Ю. А. РозановМатем. сб. , 1977, 145 :4 , 590–613
Преобразование фазового пространства диффузионного процесса, уничтожающее снос А. К. ЗвонкинМатем. сб. , 1974, 135 :1 , 129–149
Об аналитичности решений линейных уравнений с частными производными О. А. Олейник, Е. В. РадкевичМатем. сб. , 1973, 132 :4 , 592–606
Ряды Дирихле с независимыми показателями и их некоторые
применения Е. М. НикишинМатем. сб. , 1975, 138 :1 , 3–40
О некоторых некоэрцитивных нелинейных уравнениях Ю. А. ДубинскийМатем. сб. , 1972, 129 :3 , 315–323
О задаче Коши для составных систем нелинейных дифференциальных уравнений А. И. Вольперт, С. И. ХудяевМатем. сб. , 1972, 129 :4 , 504–528
Метод ортогональных проекций и краевая задача Дирихле в областях с мелкозернистой границей Е. Я. ХрусловМатем. сб. , 1972, 130 :1 , 38–60
О корректности краевых задач в механике сплошных сред П. П. Мосолов, В. П. МясниковМатем. сб. , 1972, 130 :2 , 256–267
Функции ограниченной $q$ -интегральной $p$ -вариации и теоремы вложения А. П. ТерехинМатем. сб. , 1972, 130 :2 , 277–286
Задача без начальных условий для линейных вырождающихся гиперболических уравнений второго порядка с бесконечной областью зависимости А. С. КалашниковМатем. сб. , 1972, 130 :4 , 609–622
Преобразования множителей для псевдодифференциальных операторов в $L_p$ К. ТельнерМатем. сб. , 1971, 127 :3 , 403–419
Пространства сеточных функций Л. С. ФранкМатем. сб. , 1971, 128 :2 , 187–233
Квазилинейные уравнения первого порядка со многими независимыми переменными С. Н. КружковМатем. сб. , 1970, 123 :2 , 228–255
Конечномерность ядра и коядра квазилинейных эллиптических отображений А. В. БабинМатем. сб. , 1974, 135 :3 , 422–450
О собственных функциях квазилинейных эллиптических задач С. И. ПохожаевМатем. сб. , 1970, 124 :2 , 192–212
К теоремам вложения для симметричных пространств В. С. КлимовМатем. сб. , 1970, 124 :3 , 371–386
О краевой задаче Неймана в области со сложной границей Е. Я. ХрусловМатем. сб. , 1970, 125 :4 , 556–574
О нелинейных операторах, имеющих слабо замкнутую область значений,
и квазилинейных эллиптических уравнениях С. И. ПохожаевМатем. сб. , 1969, 120 :2 , 237–259
Кратные кусочно полиномиальные приближения на классах функций с доминирующей смешанной производной В. Е. МайоровМатем. сб. , 1975, 140 :2 , 298–318
Обобщенные решения уравнений Гамильтона–Якоби типа эйконала. I. Постановка задач, теоремы существования, единственности и устойчивости, некоторые свойства решений С. Н. КружковМатем. сб. , 1975, 140 :3 , 450–493
Двоичные обобщенные функции Б. И. ГолубовМатем. сб. , 2007, 198 :2 , 67–90
О вырожденных уравнениях монотонного типа: эффект Лаврентьева и вопросы достижимости С. Е. ПастуховаМатем. сб. , 2007, 198 :10 , 89–118
Асимптотический анализ краевых задач в густых трехмерных многоуровневых соединениях Т. А. Мельник, Г. А. ЧечкинМатем. сб. , 2009, 200 :3 , 49–74
Интегральные оценки дифференцируемых функций на нерегулярных областях О. В. БесовМатем. сб. , 2010, 201 :12 , 69–82
Существование “в целом” решения системы уравнений крупномасштабной динамики океана на многообразии А. В. ДруцаМатем. сб. , 2011, 202 :10 , 55–86
Круговая симметризация конденсаторов на римановых поверхностях В. Н. ДубининМатем. сб. , 2015, 206 :1 , 69–96
Граничные значения функций из пространства Соболева с весом из класса Макенхаупта на некоторых нелипшицевых областях А. И. ТюленевМатем. сб. , 2014, 205 :8 , 67–94
Поперечники весовых классов Соболева на области с пиком А. А. ВасильеваМатем. сб. , 2015, 206 :10 , 37–70
О разрешимости задачи Дирихле для неоднородного эллиптического уравнения второго порядка А. К. ГущинМатем. сб. , 2015, 206 :10 , 71–102
Существование и единственность слабого решения интегро-дифференциального уравнения агрегации на римановом многообразии В. Ф. ВильдановаМатем. сб. , 2020, 211 :2 , 74–105
Обобщения пространства непрерывных функций; теоремы вложения А. К. ГущинМатем. сб. , 2020, 211 :11 , 54–71
Совместная задача о вращении твердого тела в вязкой жидкости под действием упругой силы С. А. Гуда, В. И. ЮдовичСиб. матем. журн. , 2007, 48 :3 , 556–576
О разрешимости обратной задачи нахождения коэффициента теплопроводности А. И. КожановСиб. матем. журн. , 2005, 46 :5 , 1053–1071
Обобщенные мультипликативные неравенства для идеальных пространств В. С. КлимовСиб. матем. журн. , 2004, 45 :1 , 134–149
Свойства отображений, близких к гармоническим. II А. П. КопыловСиб. матем. журн. , 2004, 45 :4 , 758–779
Соболевские классы функций со значениями в метрическом пространстве. II Ю. Г. РешетнякСиб. матем. журн. , 2004, 45 :4 , 855–870
О $W_q^l$ -регулярности решений систем дифференциальных уравнений в случае, когда уравнения строятся на основе разрывных функций А. П. КопыловСиб. матем. журн. , 2003, 44 :4 , 749–771
Следы функций из пространства Соболева на множествах Альфорса групп Карно С. К. Водопьянов, И. М. ПупышевСиб. матем. журн. , 2007, 48 :6 , 1201–1221
О проблеме Михлина на группах Карно Н. Н. РомановскийСиб. матем. журн. , 2008, 49 :1 , 193–206
Интегральные представления и обобщенное неравенство Пуанкаре на группах Карно Е. А. ПлотниковаСиб. матем. журн. , 2008, 49 :2 , 420–436
Константы вложения периодических пространств Соболева дробного порядка В. Л. ВаскевичСиб. матем. журн. , 2008, 49 :5 , 1019–1027
Классы отображений Соболева на пространствах Карно–Каратеодори. Различные нормировки и вариационные задачи С. К. Водопьянов, Н. Н. РомановскийСиб. матем. журн. , 2008, 49 :5 , 1028–1045
О некоторых приложениях $\mathbf P$ -ичных обобщенных функций и приближении системой $\mathbf P$ -ичных сдвигов одной функции С. С. ВолосивецСиб. матем. журн. , 2009, 50 :1 , 3–18
Теорема Соболева–Ильина для $B$ -потенциала Рисса В. С. Гулиев, Н. Н. ГарахановаСиб. матем. журн. , 2009, 50 :1 , 63–74
Полнота решений Флоке задачи о колебаниях тела в жидкости С. А. ГудаСиб. матем. журн. , 2009, 50 :3 , 515–525
О гладкости фундаментального решения для гиперболического уравнения второго порядка В. Г. РомановСиб. матем. журн. , 2009, 50 :4 , 883–889
О дифференциальных свойствах одного класса поверхностей в евклидовом пространстве Ю. Г. РешетнякСиб. матем. журн. , 2009, 50 :5 , 1148–1162
О некоторых признаках существования полного дифференциала В. М. МиклюковСиб. матем. журн. , 2010, 51 :4 , 805–814
Об оценках норм Бесова решений субэллиптических уравнений в трехмерном случае Н. Н. РомановскийСиб. матем. журн. , 2011, 52 :5 , 1159–1177
Классы Соболева на произвольном метрическом пространстве с мерой. Компактность операторов вложения Н. Н. РомановскийСиб. матем. журн. , 2013, 54 :2 , 450–467
О восстановлении мультипликативных преобразований функций из анизотропных пространств Е. Д. Нурсултанов, Н. Т. ТлеухановаСиб. матем. журн. , 2014, 55 :3 , 592–609
Теоремы вложения и вариационная задача для функций, заданных на произвольном метрическом пространстве с мерой Н. Н. РомановскийСиб. матем. журн. , 2014, 55 :3 , 627–649
Емкостные оценки, теоремы Лиувилля и об устранении особенностей для отображений с ограниченным $(p,q)$ -искажением А. Н. Байкин, С. К. ВодопьяновСиб. матем. журн. , 2015, 56 :2 , 290–321
Модульные неравенства для отображений с весовым ограниченным $(p,q)$ -искажением М. В. ТрямкинСиб. матем. журн. , 2015, 56 :6 , 1391–1415
Критерий вложения анизотропных классов Соболева–Морри в пространство равномерно непрерывных функций Н. Темиргалиев, М. А. Жайнибекова, Г. Т. ДжумакаеваСиб. матем. журн. , 2016, 57 :5 , 1156–1170
Интегральное представление и теоремы вложения для $n$ -мерных мультианизотропных пространств с одной вершиной анизотропности Г. А. КарапетянСиб. матем. журн. , 2017, 58 :3 , 573–590
Теоремы вложения Соболева и некоторые их обобщения для функций, заданных на метрическом пространстве с мерой Н. Н. РомановскийСиб. матем. журн. , 2018, 59 :1 , 158–170
Неравенство Пуанкаре и $p$ -связность стратифицированного множества Н. С. Даирбеков, О. М. Пенкин, Л. О. СарыбековаСиб. матем. журн. , 2018, 59 :6 , 1291–1302
Неравенства Харди с дополнительными слагаемыми и уравнения типа Лэмба Р. Г. Насибуллин, Р. В. МакаровСиб. матем. журн. , 2020, 61 :6 , 1377–1397
Распространяющиеся и стоячие волны Рэлея около шеренг заклепок, соединяющих пластины Кирхгофа С. А. НазаровСиб. матем. журн. , 2021, 62 :6 , 1339–1356
Неравенства Харди для веса Якоби и их применения Р. Г. НасибуллинСиб. матем. журн. , 2022, 63 :6 , 1313–1333
Аппроксимация задач оптимального управления для полулинейных эллиптических уравнений конвекции-диффузии с разрывными коэффициентами и состояниями, с управлениями в коэффициентах операторов диффузионного и конвективного переноса Ф. В. Лубышев, А. Р. Манапова, М. Э. ФайрузовЖурнал СВМО , 2016, 18 :1 , 54–69
Точность разностных схем для нелинейных эллиптических уравнений с неограниченной нелинейностью Ф. В. Лубышев, М. Э. Файрузов, А. Р. МанаповаЖурнал СВМО , 2017, 19 :3 , 41–52
О разрешимости стационарных задач естественной тепловой конвекции высоковязкой жидкости А. И. Короткий, Д. А. КовтуновТр. ИММ УрО РАН , 2008, 14 :1 , 61–73
Аппроксимация негладких решений линейных некорректных задач В. В. ВасинТр. ИММ УрО РАН , 2006, 12 :1 , 64–77
Аппроксимация сингулярно возмущенной эллиптической задачи оптимального управления с геометрическими
ограничениями на управление А. Р. ДанилинТр. ИММ УрО РАН , 2003, 9 :1 , 71–78
Оптимальное граничное управление системой, описывающей тепловую конвекцию А. И. Короткий, Д. А. КовтуновТр. ИММ УрО РАН , 2010, 16 :1 , 76–101
Разрешимость в слабом смысле одной краевой задачи, описывающей тепловую конвекцию А. И. КороткийТр. ИММ УрО РАН , 2010, 16 :2 , 121–132
$C^2(D)$ -интегральные аппроксимации негладких функций, сохраняющие $\varepsilon(D)$ -точки локальных экстремумов И. М. ПрудниковТр. ИММ УрО РАН , 2010, 16 :5 , 159–169
Управление спектральными задачами для уравнений с разрывными операторами Д. К. ПотаповТр. ИММ УрО РАН , 2011, 17 :1 , 190–200
Полные вариации высших порядков для функций многих переменных и их применение в теории некорректных задач А. С. ЛеоновТр. ИММ УрО РАН , 2012, 18 :1 , 198–212
Регулярная асимптотика обобщенного решения стационарной системы Навье–Стокса С. В. ЗахаровТр. ИММ УрО РАН , 2012, 18 :2 , 108–113
Асимптотика решения задачи оптимального граничного управления в ограниченной области А. Р. Данилин, А. П. ЗоринТр. ИММ УрО РАН , 2012, 18 :3 , 75–82
Асимптотические оценки решения сингулярно возмущенной задачи оптимального управления на отрезке с геометрическими ограничениями А. Р. Данилин, Н. С. КоробицынаТр. ИММ УрО РАН , 2013, 19 :3 , 104–112
Об одной задаче интерполяции с минимальным значением оператора Лапласа С. И. НовиковТр. ИММ УрО РАН , 2013, 19 :3 , 230–243
Обоснование асимптотик решений системы Навье–Стокса при малых числах Рейнольдса С. В. ЗахаровТр. ИММ УрО РАН , 2014, 20 :2 , 161–167
Асимптотическое разложение решения сингулярно возмущенной задачи оптимального управления на отрезке с интегральным ограничением А. Р. ДанилинТр. ИММ УрО РАН , 2014, 20 :3 , 76–85
Прямые и обратные граничные задачи для моделей стационарной реакции-конвекции-диффузии А. И. Короткий, Ю. В. СтародубцеваТр. ИММ УрО РАН , 2014, 20 :3 , 98–113
Интерполяция функциями пространства Соболева с минимальной $L_{p}$ -нормой оператора Лапласа С. И. НовиковТр. ИММ УрО РАН , 2015, 21 :4 , 212–222
Полное асимптотическое разложение решения сингулярно возмущенной задачи оптимального управления на отрезке с геометрическими ограничениями А. Р. ДанилинТр. ИММ УрО РАН , 2016, 22 :1 , 52–60
Асимптотика решения сингулярной задачи оптимального распределенного управления в выпуклой области А. Р. ДанилинТр. ИММ УрО РАН , 2017, 23 :1 , 128–142
Разрешимость одной смешанной краевой задачи для стационарной модели реакции-конвекции-диффузии А. И. Короткий, А. Л. ЛитвиненкоТр. ИММ УрО РАН , 2018, 24 :1 , 106–120
Асимптотическое разложение решения сингулярно возмущенной задачи оптимального управления с малым коэффициентом коэрцитивности А. Р. ДанилинТр. ИММ УрО РАН , 2018, 24 :3 , 51–61
Асимптотика решения задачи оптимального граничного управления с двумя малыми соподчиненными параметрами А. Р. ДанилинТр. ИММ УрО РАН , 2020, 26 :1 , 102–111
Асимптотика решения задачи оптимального граничного управления с двумя малыми соподчиненными параметрами. II А. Р. ДанилинТр. ИММ УрО РАН , 2021, 27 :2 , 108–119
Ассимиляция граничных данных для восстановления коэффициента поглощения в модели стационарной реакции-конвекции-диффузии А. И. Короткий, И. А. ЦепелевТр. ИММ УрО РАН , 2023, 29 :2 , 87–103
Теоремы Филлипса для пространств Никольского и некоторых других C. C. АджиевТруды МИАН , 2001, 232 , 33–44
Порождающие норму псевдодифференциальные операторы в пространствах $W_p^s(\mathbb R^n)$ К. О. БесовТруды МИАН , 2001, 232 , 58–71
О компактности вложений весовых пространств Соболева на области с нерегулярной границей О. В. БесовТруды МИАН , 2001, 232 , 72–93
Неулучшаемость неравенств Соболева для класса нерегулярных областей Д. А. ЛабутинТруды МИАН , 2001, 232 , 218–222
Pointwise Characterization of Sobolev Classes B. BojarskiТруды МИАН , 2006, 255 , 71–87
О собственных колебаниях тела с большим количеством
концентрированных масс, расположенных непериодически вдоль границы Е. И. Доронина, Г. А. ЧечкинТруды МИАН , 2002, 236 , 158–166
Обобщенная допустимость, корректность и обратимость
линейных дифференциальных операторов с частными производными В. М. ТюринТруды МИАН , 2002, 236 , 343–346
Вложение пространства Соболева в пространства Орлича и BMO
со степенными весами Б. В. ТрушинТруды МИАН , 2003, 243 , 334–345
Что такое современная математическая физика? Л. Д. ФаддеевТруды МИАН , 1999, 226 , 7–10
Характеризации функциональных пространств $B^s_{p,q}(G)$ , $L^s_{p,q}(G)$ , $W^s_p(G)$ и некоторых других. Приложения C. C. АджиевТруды МИАН , 1999, 227 , 7–42
Пространства функций типа Лизоркина–Трибеля на нерегулярной области О. В. БесовТруды МИАН , 2008, 260 , 32–43
Теоремы вложения Соболева для некоторого класса анизотропных нерегулярных областей Б. В. ТрушинТруды МИАН , 2008, 260 , 297–319
Пространства функций дробной гладкости на нерегулярной области О. В. БесовТруды МИАН , 2010, 269 , 31–51
Непрерывность вложений весовых пространств Соболева в пространства Лебега на анизотропно нерегулярных областях Б. В. ТрушинТруды МИАН , 2010, 269 , 271–289
Поперечники весовых классов Соболева на области, удовлетворяющей условию Джона А. А. ВасильеваТруды МИАН , 2013, 280 , 97–125
О колмогоровских поперечниках классов Соболева на нерегулярной области О. В. БесовТруды МИАН , 2013, 280 , 41–52
Труды В. А. Стеклова по уравнениям математической физики и развитие его результатов в этой области А. К. ГущинТруды МИАН , 2015, 289 , 145–162
Вложение весового пространства Соболева и свойства области О. В. БесовТруды МИАН , 2015, 289 , 107–114
Аддитивные и мультипликативные анизотропные оценки интегральных норм дифференцируемых функций на нерегулярных областях А. Ю. ГоловкоТруды МИАН , 2015, 290 , 293–303
Замечание о функциональных пространствах на негладких областях Г. ТрибельТруды МИАН , 2016, 293 , 346–351
Условия вложения пространств Соболева на области с анизотропным пиком О. В. БесовТруды МИАН , 2022, 319 , 51–63
Cрезки и композиции в функциональных пространствах Г. ТрибельТруды МИАН , 2023, 323 , 224–251
Инвариантное относительно перестановок тождественных частиц описание спектра оператора энергии квантовомеханических систем А. Г. Сигалов, И. М. СигалТМФ , 1970, 5 :1 , 73–93
Квазирегулярные решения для систем дифференциальных уравнений гипоэллиптического типа А. С. КопецТМФ , 1990, 85 :1 , 25–31
Глобальная неразрешимость нелинейной модели проводника в квазистационарном приближении М. О. Корпусов, Е. В. ЮшковТМФ , 2017, 191 :1 , 3–13
Локальные бифуркации и глобальный аттрактор двух версий слабодиссипативного уравнения Гинзбурга–Ландау А. Н. Куликов, Д. А. КуликовТМФ , 2022, 212 :1 , 40–61
Смешанная задача Дирихле—Стеклова для бигармонического уравнения в весовых пространствах О. А. МатевосянТр. сем. им. И. Г. Петровского , 2016, 31 , 87–109
Об оценке собственных функций задачи типа Стеклова с малым параметром в случае предельного вырождения спектра В. А. Садовничий, А. Г. ЧечкинаУфимск. матем. журн. , 2011, 3 :3 , 127–139
Оптимальное граничное управление в области с малой полостью А. Р. ДанилинУфимск. матем. журн. , 2012, 4 :2 , 87–100
О числе решений в задачах со спектральным параметром для уравнений с разрывными операторами Д. К. ПотаповУфимск. матем. журн. , 2013, 5 :2 , 56–62
Оценка точности по состоянию конечномерных аппроксимаций задач оптимизации для полулинейных эллиптических уравнений с разрывными коэффициентами и решениями А. Р. Манапова, Ф. В. ЛубышевУфимск. матем. журн. , 2014, 6 :3 , 72–87
О дифференцируемости по Фреше функционала качества в задачах оптимального управления коэффициентами эллиптических уравнений А. Р. Манапова, Ф. В. ЛубышевУфимск. матем. журн. , 2016, 8 :1 , 84–101
Определение параметров в телеграфном уравнении А. И. Кожанов, Р. Р. СафиулловаУфимск. матем. журн. , 2017, 9 :1 , 63–74
О единственности слабого решения смешанной задачи для интегро-дифференциального уравнения агрегации В. Ф. ВильдановаУфимск. матем. журн. , 2018, 10 :4 , 41–50
Конформные инварианты плоских областей гиперболического типа Ф. Г. Авхадиев, Р. Г. Насибуллин, И. К. ШафигуллинУфимск. матем. журн. , 2019, 11 :2 , 3–18
Метод возмущений для сильно эллиптических систем второго порядка с постоянными коэффициентами А. О. БагапшУфимск. матем. журн. , 2023, 15 :4 , 20–29
Неравенства Кларксона для пространства Соболева периодических функций И. В. КорытовУчен. зап. Казан. ун-та. Сер. Физ.-матем. науки , 2016, 158 :3 , 336–349
Параболические уравнения с неизвестным коэффициентом поглощения А. И. КожановВестник ЧелГУ , 2011:13 , 5–19
Управление эллиптическими
резонансными системами с разрывными нелинейностями В. Н. Павленко, Л. Б. КожаеваВестник ЧелГУ , 2002:6 , 147–154
Псевдогиперболические и гиперболические уравнения
с растущими младшими членами А. И. КожановВестник ЧелГУ , 1999:5 , 31–47
Вариационный метод для уравнений с разрывными операторами В. Н. ПавленкоВестник ЧелГУ , 1994:2 , 87–95
О разрешимости краевых задач для квазилинейной системы уравнений смешанно-составного типа с меняющимся направлением времени в многомерной области М. А. НурмамедовВладикавк. матем. журн. , 2010, 12 :2 , 46–61
Теорема о плотности М. С. АлбороваВладикавк. матем. журн. , 2001, 3 :3 , 3–7
$L_p-L_q$ -оценки для обобщенных потенциалов Рисса с осциллирующими ядрами М. Н. Гуров, В. А. НогинВладикавк. матем. журн. , 2017, 19 :2 , 3–10
Г. П. Акилов и преподавание функционального анализа С. С. КутателадзеВладикавк. матем. журн. , 2021, 23 :1 , 99–101
Теоремы вложения Соболева и некоторые их обобщения для отображений, заданных на топологическом пространстве с мерой Н. Н. РомановскийВестн. Моск. ун-та. Сер. 1. Матем., мех. , 2022:1 , 25–37
Банаховы пространства мультипликативных автоморфных форм О. А. СергееваВестн. НГУ. Сер. матем., мех., информ. , 2005, 5 :4 , 70–89
Обратные задачи для гиперболических уравнений: случай неизвестных коэффициентов, зависящих от времени И. Р. Валитов, А. И. КожановВестн. НГУ. Сер. матем., мех., информ. , 2006, 6 :1 , 43–59
О разрешимости обратных задач восстановления коэффициентов в уравнениях составного типа А. И. КожановВестн. НГУ. Сер. матем., мех., информ. , 2008, 8 :3 , 81–99
О задаче Дирихле для эллиптического уравнения А. К. ГущинВестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки , 2015 :1 , 19–43
Интегро-дифференциальные уравнения второй краевой задачи линейной теории упругости.
Сообщение 1. Однородное изотропное тело В. В. СтружановВестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки , 2017 :3 , 496–506
Интегро-дифференциальные уравнения второй краевой задачи линейной теории упругости.
Сообщение 2. Неоднородное анизотропное тело В. В. СтружановВестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки , 2020 :1 , 199–208
Нелокальные задачи с интегральным условием для дифференциальных уравнений третьего порядка А. И. Кожанов, А. В. ДюжеваВестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки , 2020 :4 , 607–620
Вторая начально-краевая задача с интегральным смещением для гиперболических и параболических уравнений второго порядка А. И. Кожанов, А. В. ДюжеваВестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки , 2021 :3 , 423–434
Две начально-краевые задачи с нелинейными граничными условиями для одномерного гиперболического уравнения Л. С. Пулькина, М. В. СтригунВестн. СамГУ. Естественнонаучн. сер. , 2011:2 , 46–56
Об обратимости линейных дифференциальных операторов эллиптического типа в некоторых функциональных пространствах Т. Б. Кузнецова, В. М. ТюринВестн. СамГУ. Естественнонаучн. сер. , 2009:4 , 5–19
Теоремы о полунепрерывности снизу отображений с $s$ -усредненной характеристикой А. Н. Малютина, М. А. ЕлизароваВестн. Томск. гос. ун-та. Матем. и мех. , 2009:4 , 46–52
Экстремальная функция линейного функционала в весовом пространстве Соболева И. В. КорытовВестн. Томск. гос. ун-та. Матем. и мех. , 2011:2 , 5–15
Разрешимость задачи оптимального управления для обыкновенного дифференциального уравнения второго порядка с критерием качества Лионса Н. М. Махмудов, В. И. СалмановВестн. Томск. гос. ун-та. Матем. и мех. , 2012:1 , 36–46
Равномерная выпуклость весового пространства Соболева И. В. КорытовВестн. Томск. гос. ун-та. Матем. и мех. , 2014:6 , 25–34
Влияние формы области на решение задачи об обтекании препятствия потоком смеси вязких сжимаемых жидкостей А. А. ЖалнинаВестн. Томск. гос. ун-та. Матем. и мех. , 2016:5 , 5–20
О модуле непрерывности отображений с $s$ -усредненной характеристикой А. Н. Малютина, У. К. АсанбековВестн. Томск. гос. ун-та. Матем. и мех. , 2019:59 , 11–15
Линейный финитный функционал в весовом пространстве Соболева И. В. КорытовВестн. Томск. гос. ун-та. Матем. и мех. , 2023:81 , 14–30
Бифуркация автоволн обобщенного кубического уравнения Шредингера в случае трех независимых переменных А. Н. Куликов, Д. А. КуликовВестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки , 2008:3 , 23–34
Бифуркации наноструктур под воздействием ионной бомбардировки А. Н. Куликов, Д. А. Куликов, А. С. РудыйВестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки , 2011:4 , 86–99
О вольтерровом обобщении метода монотонизации для нелинейных функционально-операторных уравнений А. В. ЧерновВестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки , 2012:2 , 84–99
О тотально глобальной разрешимости эволюционного уравнения с монотонным нелинейным оператором А. В. ЧерновВестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки , 2022, 32 :1 , 130–149
О тотально глобальной разрешимости эволюционного вольтеррова уравнения второго рода А. В. ЧерновВестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки , 2022, 32 :4 , 593–614
Устойчивость и локальные бифуркации одномодовых состояний равновесия вариационного уравнения Гинзбурга–Ландау Д. А. КуликовВестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки , 2023, 33 :2 , 240–258
Модификация итерационной факторизации для численного решения двух эллиптических уравнений второго порядка в прямоугольной области А. Л. УшаковВестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ. , 2013, 5 :2 , 88–93
Модель стимулирующей заработной платы как задача оптимального управления Е. А. Александрова, С. А. АникинВестн. ЮУрГУ. Сер. Матем. моделирование и программирование , 2014, 7 :4 , 22–35
Об интеграле Помпею и некоторых его обобщениях А. П. СолдатовВестн. ЮУрГУ. Сер. Матем. моделирование и программирование , 2021, 14 :1 , 60–74
Об условиях справедливости неравенства Пуанкаре А. И. Назаров, С. В. ПоборчийЗап. научн. сем. ПОМИ , 2013, 410 , 104–109
Точечное крепление пластины Кирхгофа вдоль ее кромки Д. Гомес, С. А. Назаров, М.-Е. ПересЗап. научн. сем. ПОМИ , 2020, 493 , 107–137
Вейвлет-метод решения задачи нестационарной фильтрации с разрывными коэффициентами Э. М. Аббасов, О. А. Дышин, Б. А. СулеймановЖ. вычисл. матем. и матем. физ. , 2008, 48 :12 , 2163–2179
Применение вейвлет-преобразований к решению краевых задач для линейных уравнений параболического типа Э. М. Аббасов, О. А. Дышин, Б. А. СулеймановЖ. вычисл. матем. и матем. физ. , 2008, 48 :2 , 264–281
О некоторых задачах оптимального управления и их разностных аппроксимациях и регуляризации для квазилинейных эллиптических уравнений с управлениями в коэффициентах Ф. В. Лубышев, А. Р. МанаповаЖ. вычисл. матем. и матем. физ. , 2007, 47 :3 , 376–396
Исследование разрушения вихря в стратифицированной жидкости С. П. КшевецкийЖ. вычисл. матем. и матем. физ. , 2006, 46 :11 , 2081–2098
Асимптотики собственных элементов краевых задач оператора Шрёдингера с большим потенциалом, локализованным на малом множестве А. Р. БикметовЖ. вычисл. матем. и матем. физ. , 2006, 46 :4 , 667–682
Параболические уравнения с неизвестным коэффициентом, зависящим от времени А. И. КожановЖ. вычисл. матем. и матем. физ. , 2005, 45 :12 , 2168–2184
Развитие метода нормальной сплайн-коллокации для линейных дифференциальных уравнений В. К. Горбунов, В. В. ПетрищевЖ. вычисл. матем. и матем. физ. , 2003, 43 :8 , 1150–1159
К обоснованию метода конечных суперэлементов М. П. Галанин, Е. Б. СавенковЖ. вычисл. матем. и матем. физ. , 2003, 43 :5 , 713–729
Метод приближенного решения в $C^2$ уравнения гиперболического типа с липшицевой нелинейностью А. Ю. ЩегловЖ. вычисл. матем. и матем. физ. , 2001, 41 :3 , 420–435
О скорости сходимости метода Галеркина для одного класса квазилинейных операторных дифференциальных уравнений Н. Н. Букесова, С. Е. ЖелезовскийЖ. вычисл. матем. и матем. физ. , 1999, 39 :9 , 1519–1531
О корректности задачи Коши для системы уравнений среднего поля, описывающей модель твердого магнетика В. Ж. СакбаевЖ. вычисл. матем. и матем. физ. , 1999, 39 :6 , 970–988
Глобальная разрешимость задачи Коши для системы нелинейной упругости В. А. ТупчиевЖ. вычисл. матем. и матем. физ. , 1997, 37 :9 , 1094–1104
Дискретно-стохастические процедуры глобальной оценки интеграла, зависящего от параметра А. В. ВойтишекЖ. вычисл. матем. и матем. физ. , 1996, 36 :8 , 23–38
Оценка границ спектра разностного оператора для задач квазистационарной электродинамики М. П. ГаланинЖ. вычисл. матем. и матем. физ. , 1996, 36 :3 , 109–116
О линейной аппроксимации на плоскости, не зависящей от вырождения триангуляции Д. О. ФилимоненковЖ. вычисл. матем. и матем. физ. , 1995, 35 :9 , 1439–1445
Теоремы вложения для следов сеточных функций в трехмерном случае М. П. ГаланинЖ. вычисл. матем. и матем. физ. , 1994, 34 :12 , 1815–1831
Об одной начально-краевой задаче, возникающей в динамике сжимаемой стратифицированной жидкости С. А. Габов, А. В. СундуковаЖ. вычисл. матем. и матем. физ. , 1990, 30 :3 , 457–465
Вейвлет-метод решения квазилинейных параболических уравнений второго порядка с дивергентной главной частью Э. М. Аббасов, О. А. Дышин, Б. А. СулеймановЖ. вычисл. матем. и матем. физ. , 2009, 49 :9 , 1629–1642
Обоснование метода установления для одной математической модели переноса заряда в полупроводниках А. М. Блохин, Д. Л. ТкачёвЖ. вычисл. матем. и матем. физ. , 2011, 51 :8 , 1495–1517
О разностных аппроксимациях задач оптимального управления для полулинейных эллиптических уравнений с разрывными коэффициентами и решениями Ф. В. ЛубышевЖ. вычисл. матем. и матем. физ. , 2012, 52 :8 , 1378–1399
Формирование волнообразных наноструктур на поверхности плоских подложек при ионной бомбардировке А. Н. Куликов, Д. А. КуликовЖ. вычисл. матем. и матем. физ. , 2012, 52 :5 , 930–945
К нелинейной устойчивости параболического профиля в плоском периодическом канале О. В. ТрошкинЖ. вычисл. матем. и матем. физ. , 2013, 53 :11 , 1903–1922
Об установлении спутного вихря в потоке идеальной среды О. М. Белоцерковский, М. С. Белоцерковская, В. В. Денисенко, И. В. Ериклинцев, С. А. Козлов, Е. И. Опарина, О. В. Трошкин, С. В. ФортоваЖ. вычисл. матем. и матем. физ. , 2014, 54 :1 , 164–169
Аппроксимации задач оптимального управления для полулинейных эллиптических уравнений с разрывными коэффициентами и решениями, с управлением в граничных условиях сопряжения Ф. В. Лубышев, А. Р. Манапова, М. Э. ФайрузовЖ. вычисл. матем. и матем. физ. , 2014, 54 :11 , 1767–1792
О коротковолновом характере неустойчивости Рихтмайера–Мешкова М. С. Белоцерковская, О. М. Белоцерковский, В. В. Денисенко, И. В. Ериклинцев, С. А. Козлов, Е. И. Опарина, О. В. ТрошкинЖ. вычисл. матем. и матем. физ. , 2016, 56 :6 , 1093–1103
Аппроксимации задач оптимального управления для полулинейных эллиптических уравнений с разрывными коэффициентами и состояниями, с управлениями в коэффициентах при старших производных Ф. В. Лубышев, М. Э. ФайрузовЖ. вычисл. матем. и матем. физ. , 2016, 56 :7 , 1267–1293
Рандомизированный проекционный метод для оценки угловых распределений поляризованного излучения на основе численного статистического моделирования Г. А. Михайлов, Н. В. Трачева, С. А. УхиновЖ. вычисл. матем. и матем. физ. , 2016, 56 :9 , 1560–1570
Параболические уравнения с неизвестными коэффициентами, зависящими от времени А. И. КожановЖ. вычисл. матем. и матем. физ. , 2017, 57 :6 , 961–972
Согласованные оценки скорости сходимости в сеточной норме $W_{2,0}^2(\omega)$ разностных схем для нелинейных эллиптических уравнений со смешанными производными и решениями из $W_{2,0}^m(\Omega)$ , $3<m\leqslant4$ Ф. В. Лубышев, М. Э. ФайрузовЖ. вычисл. матем. и матем. физ. , 2017, 57 :9 , 1444–1470
Экономичный численный метод решения коэффициентной обратной задачи для волнового уравнения в трехмерном пространстве А. Б. Бакушинский, А. С. ЛеоновЖ. вычисл. матем. и матем. физ. , 2018, 58 :4 , 561–574
Асимптотика решения бисингулярной задачи оптимального граничного управления в ограниченной области А. Р. ДанилинЖ. вычисл. матем. и матем. физ. , 2018, 58 :11 , 1804–1814
О гладкой вихревой катастрофе единственности стационарных течений идеальной жидкости О. В. ТрошкинЖ. вычисл. матем. и матем. физ. , 2019, 59 :10 , 1803–1814
Вихревые фантомы в стационарной задаче о протекании Кочина–Юдовича О. В. ТрошкинЖ. вычисл. матем. и матем. физ. , 2021, 61 :4 , 684–688